Contextualized Poverty Targeting through Multimodal Spatial Data and Machine Learning in Congo

Woojin Jung,^a Ph.D., Rofaida Benotsmane,^bMA., Quentin Stoeffler,^cPh.D., Andrew H. Kim,^a MSW, LSW, Saeed Ghadimi,^d Ph.D., Maryam Hosseini,^ePh.D., Dimitrios Ntarlagiannis,^aPh.D., Tawfiq Ammari,^aPh.D., Yuxiao Lu,^f BEng., Jordan Steiner,^aPh.D.

Institutional Affiliations: ^a Rutgers University; ^bIstanbul Technical University of Bordeaux; ^d University of Waterloo; ^eMassachusetts Institute of Technology; ^fSingapore Management University

Abstract

Enhancing targeting accuracy in social welfare programs can lift millions out of poverty without increasing costs. Advancements in this field harness georeferenced data and leverage AI/machine learning (ML) to predict poverty and allocate aid. However, these models that are meant to solve data sparsity are predominantly developed in countries with georeferenced national surveys and for geographic targeting. We demonstrate that microtargeting can be achieved in data-deficient contexts lacking ground truth. Using the case of Brazzaville in Congo, we leverage intuitive multimodal data to predict multidimensional poverty at the household level. Our ML-based targeting improves traditional methods based on error metrics, targeting errors, and distribution-sensitive poverty indices. Our spatially augmented model, surpassing status quo mechanisms, can promote inclusive social welfare programs at granular levels.

Introduction	Data	Results 1: ML Performance		
 Ironically, AI/Machine learning (ML)-based poverty models 	Mathadalaav	SHAP Plot of Top Features for Top 3 Models		
that are meant to solve data sparsity are predominantly	Methodology	High High Post-PMT ····································		

- developed in countries with georeferenced ground truth, at the national level, and for geographic targeting.
- Our study demonstrates that such a method can be developed for micro household level targeting at a low-tier sub-national scale in 'worse off' contexts, lacking georeferenced surveys.
- We demonstrate a process of developing geolocated ground truth data as well as poverty predictors from satellite imagery, social media, geographic, and administrative data in highly granular, data-deficient contexts.
- We critically examine various high performing ML models to evaluate their simulated impact on poverty alleviation.
- Research Question: Do new georeferenced features, when combined with ML techniques, improve upon current targeting methods?

Data

Our study is centered on the Ouenzé district in Brazzaville, Republic of Congo.

		Family Size	· · · · · · · · · · · · · · · · · · ·	Family Size	+ + 4
Family Size		Dist. to Worship		Dist. to Edu	
Dist. to Worship		Dist. to Edu	* •••	Dist. to Worship	•
Dist. to Railroad		Dist. to River		Topic 8 COVID_avg_1km	•
Dist to Sport	<u> </u>	Dist. to Railroad	+-	Dist. to Railroad	+-
Dist. to Sport		Invest: Other	-	Dist. to River	+
Dist. To Closest TW	*	Topic 8 COVID_avg	+	Invest: Other	-
Dist. to Edu	·····	W. Num. of Buildings	+	و sum_ntl_block	•
st. to Secondary Rd		Dist. to Sport	+	W. Num. of Buildings	+
Dist to Admin		sum_ntl_block	+	Dist. to Tertiary Rd	•
Dist. to Admin	The second se	₩ NDVI	•	Dist. to Sport	•
Dist. to Hydro	enarité francés dan étai da 🕐 el activat da se	Dist. To Closest TW	+	Dist. to Secondary Rd	•
Dist. to Art		Dist. to Tertiary Rd	•	Dist to Closest TW	+
Dist. to Primary Rd		Num. of Buildings	•••••	Invest: Non-Poor	•
Dist to Uselik		Dist. to Secondary Rd	•	Dist. to Hydro	+
Dist. to Health		Invest: Non-Poor	•	Dist. to Admin	•
Dist. to River		Blue	•	Topic 2 Pov+Hunger 1_avg_1km	+
Dist. to Tertiary Rd		Dist. to Hydro	•	Num. of Buildings	+
		W. Sum of Building Area	1	W. Sum of Building Area	•
-0.	6 -0.4 -0.2 0.0 0.2 0.4 SHAP value (impact on model output)	00000	-0.3 -0.2 -0.1 0.0 0.1 0.2 SHAP value (impact on model outp	0.3 Low	-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 SHAP value (impact on model output)

- We construct the ground truth Multidimensional Poverty Index (MPI) based on Social SafetyNet database in Congo Brazzaville and geolocate households.
- We collect and augment spatial features to the traditional targeting method, Proxy Means Test (PMT) as well as demographic information, family size.
- We employ a total of six algorithms to predict MPI using traditional and spatial features: Ridge. ElasticNet, Support Vector Regression (SVR), Extreme gradient boosting (XG Boost), Bayesian additive regression trees (BART), and Multilayer Perceptron (MLP).
- Overall, MLP with household-level distance features (distance to infrastructure, distance to Tweet) achieves the best performance (R²=0.709; test MSE=0.009).
- SHAP plots show that PMT, family size, distance from infrastructure, and distance to closest Tweet features are features commonly employed among top ML models.

Results 2: Targeting Performance

0.025

Lower targeting errors of Machine-

Universal

Average NTL, Building Area, Internet Speed, Count of Tweets in Ouenzé district

Average NTL	Average Building Area (sqm)	Average Internet Upload Speed (Mbps)	Number of Tweets	
1.7 - 7.0	10 - 100	2 - 8	1 - 4	
7.1 - 11	200 - 300	9 - 10	5 - 20	
12 - 15	400 - 1,000	11 - 17	30 - 50	Ouenze
16 - 19	2,000 - 6,000	18 - 34	60 - 300	• Ouenze
20 - 25	7,000 - 10,000	35 - 83	400 - 700	Surveye
	No Data	No Data	No Data	Househ

Internet Speed Test Data (Fixed: Purple, Mobile: Pink)

Results 1: ML Performance Performance Metrics of Models with $R^2 > 0.700$ Feature sets used for prediction models Extended+TW Full Full+DaySatImg mean val MSE test MSE Algorithm Family Size MLP 0.009 Extended+TW 0.7090.012 CBT Full+DaySatImg XGBoost 0.7060.010PMT 0.014Infrastructure (Infra) XGBoost 0.7030.0140.010**Building footprints** Dist. to closest twee Fweet count & topics Nighttime luminosity (NTL) Internet Speeds (Int) Davtime satellite imagery (DaySatImg Num. of Variables

learning Targeting (MLT) Models as XGB Full --- Poverty Line Compared to Traditional Community-0.020 Based Targeting (CBT) and Proxy Means Test (PMT). 0.015 0.010 🖞 Model Targeting errors Perfect 0.0%7.1%XGBoost Full 0.005 XGBoost Full+DaySatImg 7.9%MLP Extended+TW 21.7%MLP Baseline 22.9%20 100 40 60 80 Traditional: PMT 23.8%Wealth Traditional: CBT Invest Only 49.2%The "Poverty Incidence", "Poverty Gap", "Poverty Severity" 69.9%Random

The XGBoost full model, which uses all features except for Daytime Satellite Imagery features, is the top performer, achieving the lowest targeting error at 7.1%.

Reductions

 $\mathbf{N}\mathbf{A}$

Results 3: Poverty Reduction Impact

Model	Features	Poverty Index (P)	Mean		
Perfect		\mathbf{P}_{0}	29.49	•	Our XGBoost Full
		\mathbf{P}_1	3.27		model is near the
YCB- ant Fall		P_2	0.94		model is near the
AGBoost Full	All Iraditional+Infrastructure+1 w+N1L+Int	P_0	27.00		hypothetical parfact
		\mathbf{P}_{0}	0.03		hypothetical periect
XGBoost Full+DaySatImg	All Traditional & Spatial Features+DaySatImg	Po	27.50		taracting method with
		P_1	3.21		largeting method with
		P_2	0.93		a noverty incidence
MLP Extended+TW	Family+PMT+Infrastructure & TW Dist	\mathbf{P}_{0}	22.43		a poverty meldence
		$\mathbf{P_1}$	2.95		reduction of 27 65%
		P_2	0.89		
MLP Baseline	Family+PMT	\mathbf{P}_{0}	21.51		
		P_1	2.93		
Traditional DMT		P_2	0.89	•	Our best MLT model
Traditional: FM1		\mathbf{P}_{1}	$\frac{21.51}{3.00}$		
		P_2	0.90		makes a substantial
Traditional: CBT	CBT Investigator	P_0	13.83		
	0	\mathbf{P}_1	2.08		difference in terms of
		P_2	0.68		a local a facility of the still and a f
Universal		\mathbf{P}_{0}	16.28		simulated reduction of
		$\mathbf{P_1}$	1.55		
		P_2	0.53		poverty inclaence,
Random		P_0	8.76		ann and an arity
		P_1	1.03		gap, and seventy.
		P2	0.32		

Robustness Check

Relative Wealth Index (RWI) - based Targeting

Comparison of Welfare Prediction Accuracy: MLP vs. Ground Truth vs. XGBoost

Admin Background	istrative level 2 d image: Google Satellite			12		1km buffer Landsat-8 1km buffer Sentinel-2 MOSAIKS	$\begin{array}{c} 0.700 \\ 0.702 \\ 0.645 \end{array}$	$\begin{array}{c} 0.014 \\ 0.014 \\ 0.015 \end{array}$	$\begin{array}{c} 0.010 \\ 0.010 \\ 0.010 \\ 0.012 \end{array}$
tistic an val MSE MSE	Value 0.699 0.014 0.010	7			Our model surpasses RWI, MOSAIK- based targeting and current actual targeting method in Congo.				
	7.13					Status Quo Targe	eting F	Perform	ance
					0 1 2 km	Perfect method Status Quo XGBoost Full PMT Random method Universal method	15 12 0.0 2.6 1.1 2.4 6.7 NA	17geting 0% 5% 4% 4% 7% 4	error rat

Conclusion

- Targeting drawn from ML techniques and geospatial features generates sizable improvements in predicting wealth.
- Machine Learning-based Targeting (MLT) also leads to considerably improved targeting error, poverty headcount, poverty gap, and poverty severity reductions.
- The accuracy of poverty prediction is greatly increased by including intuitive and fine-grained geographical data sources.
- The best predictive model may differ from the model with the best policy outcomes when evaluating models based on poverty effect measurements, such as poverty indices.
- The robust performance of our model suggests the potential of data-augmented MLT to design and scale social welfare programs in larger areas with greater spatial variation.