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Many industries, including the NFL with the Rooney Rule and law firms with the Mansfield Rule, have
adopted interview-stage diversity interventions requiring a minimum representation of disadvantaged groups
in the interview set. However, the effectiveness of such policies remains inconclusive. In light of this, we
develop a framework of a two-stage hiring process, where rational firms, with limited interview and hiring
capacities, aim to maximize the match value of their hires. The labor market consists of two equally sized
social groups, m and w, with identical ex-post match value distributions. Match values are revealed only
post-interview, while interview decisions rely on partially informative pre-interview scores. Pre-interview
scores are more informative for group m, while interviews reveal more for group w; as a result, if firms could
interview all candidates, both groups would be equally hired. However, due to limited interview capacity
and information asymmetry, we show that requiring equal representation in the interview stage does not
translate into equal representation in the hiring outcome, even though interviews are more informative for
group w. In certain regimes, with or without intervention, a firm may interview more group w candidates,
but still hire fewer. At an individual level, we show that strong candidates from both groups benefit from
the intervention as the candidate-level competition weakens. For borderline candidates, group w candidates
gain at the expense of group m. To understand the impact of non-universal interview-stage interventions on
the market, we study a model with two vertically-differentiated firms, where only the top firm adopts the
intervention. We characterize the unique equilibrium and demonstrate potentially negative effects: we show
that in certain regimes, the lower firm hires less group w candidates due to increased firm-level competition
for them, and further find examples where overall fewer group w candidates are hired across the market. At
an individual level, while superstar candidates in both groups benefit, surprisingly the impact on borderline
candidates may reverse: the lower firm may replace borderline group w candidates with borderline group
m candidates in its interview set, effectively reducing the hiring probability of those borderline group w

candidates. Overall, our findings highlight challenges in diversifying the labor market at early hiring stages
due to information asymmetry, filtering, and competition. Beyond our context, our natural framework of a
market with two-stage hiring may be of independent interest.
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1. Introduction
In 2003, in response to concerns over the low representation of African Americans in head coaching and
management positions, the NFL adopted the Rooney rule, named after Dan Rooney, the late owner
of the Pittsburgh Steelers (NFL Football Operations 2025). Initially, the policy required teams with
a head coaching vacancy to interview at least one racial minority candidate before making a hire; it
later expanded to include more positions and women candidates. Taking a play from the NFL, many
leading organizations across industries, from tech (Frier 2022) to higher education (Wong 2016) to
law firms (Lamarre 2024), adopted similar interview policies to increase diversity in their workforce.
For example, the Mansfield rule, which requires law firms to consider at least 30% of candidates for
leadership roles from underrepresented groups, have been adopted by many leading law firms (Diversity
Lab 2023). Overall, in 2023, 56% of the S&P 500 companies reported having an interview-stage diversity
policy similar to the Rooney rule for higher-level positions (Spencer Stuart 2023).

Despite its widespread adoption, the Rooney Rule has had little to no success in increasing diversity
in coaching teams, law firms, or C-suites (Cecchi-Dimeglio 2022, Rider et al. 2023, Smith and Lasker
2023). In 2022, Brian Flores, a former Black coach of Miami Dolphins, made headlines by filing a racial
discrimination lawsuit against the NFL and the New York Giants, alleging that “his ‘Rooney rule’
interview with the Giants was for a job that was never really open to him” (Li and Dasrath 2022). Two
separate statistical analyses of data from 2015 to 2022 revealed that one out of every three interviews
conducted by NFL teams was with a Black candidate, but only 8 Black candidates were hired for
a total of 56 open positions. The most statistically significant factor differentiating those hired from
those not hired was race (Paine 2022, Smith and Lasker 2023). For law firms, Cecchi-Dimeglio (2022)
found that the Mansfield rule certification did not have a noticeable impact on improving diversity.
These examples motivate our research question:

Why do interview-stage diversity policies like the Rooney Rule struggle to significantly improve
representation in hiring outcomes?

1.1. Our Contributions
Various social factors, such as systematic biases and structural barriers, potentially contribute to
the limited success of such diversity interventions. While these factors are profoundly important, we
abstract away from them to focus on two operational aspects of the hiring process: (i) the two-stage
nature of hiring with interviews and (ii) competition across firms. Our goal is to understand how these
aspects influence the success of (or lack thereof) interview-stage diversity interventions like the Rooney
rule. To that end, we develop and analyze a stylized model of a labor market with a two-stage hiring
process.1 Below, we provide an overview of our framework and main findings.

1 We remark that a few other papers develop stylized models to study the Rooney rule; we provide a detailed comparison
in Section 1.2.
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A Labor Market Model with Two-Stage Hiring and Statistical Discrimination. In our
model (Sections 2 and 4.1), each firm is fully rational, has limited hiring capacity, and aims to maximize
the match value of its hires. However, match values are a priori unknown, so the firm has an interview
stage to reveal the match values of interviewees. Each firm has limited interview capacity. Thus, it
first selects a subset of candidates for an interview, and then hires the best based on their interview
performance. Before the interviews, each firm can only observe noisy signals of candidates’ match
values, termed pre-interview scores, which capture their observable features such as prior experience and
academic performance. Consequently, the firm relies on pre-interview scores to decide which candidates
to interview. This two-stage hiring process mirrors common hiring practices across various sectors.

The pool of candidates consists of two equal-sized social groups, m and w. Assuming an idealized
world without inherent biases and structural barriers, we posit that the two groups have identical
match value distributions. Consequently, if the firms could interview everyone in the population, both
groups would be equally represented in the hiring outcome. However, firms have limited interview
capacity and must rely on (partially informative) pre-interview scores to allocate the limited interview
slots between the two social groups.

The only distinction between the two groups arises from differences in the informativeness of their
pre-interview scores and interviews. Specifically, following the seminal framework of Phelps (1972),
we assume that pre-interview scores are normally distributed, with a common zero mean. Variance,
however, differs across the two social groups, with groupm’s pre-interview scores having higher variance
than group w’s. This assumption is motivated by empirical evidence supporting the “greater male
variability hypothesis” (Machin and Pekkarinen 2008, Baye and Monseur 2016), which suggests some
asymmetry in the informativeness of features—in our model, the pre-interview scores—across social
groups (see Assumption 1 and the related discussion). If the firm had a one-stage hiring process (i.e.,
without interviews) and hired candidates solely based on their pre-interview scores, the single-firm
setting of our framework would essentially reduce to the classic statistical discrimination problem by
Phelps (1972). In this case, the differential informativeness between the two groups, stemming from
the difference in their pre-interview scores’ variances, would directly lead to a lower hiring rate for
group w, even though the firm is perfectly rational.

In our two-stage hiring process, however, firms do not make hiring decisions based on noisy scores;
instead, they base their hiring decision on the match value of candidates revealed during interviews.
Specifically, at the interview-stage, a candidate’s match value is drawn independently across firms,
conditional on their pre-interview score. The conditional match value is normally distributed with
mean equal to the candidate’s pre-interview score and known variance. This represents that a candidate
with a higher pre-interview score is more likely to reveal a higher match value, but each firm further
uncovers its own idiosyncratic preferences during interviews.2 The variance again differs across groups,
2 As we elaborate in Section 2, the interview process resembles the consumer choice framework, where the decision-
maker (the firm in our setting) derives utility from two components: an intrinsic value (the candidate’s pre-interview
score) and an idiosyncratic component.
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with group w now having higher variance than group m, meaning that the interview process is more
informative for group w than group m to ensure the identical ex-post match value distribution across
the two groups (see Assumption 1). As mentioned before, if firms could interview all candidates,
both groups would be hired at an equal rate. However, due to the limited interview capacity and the
information asymmetry across groups, disparities begin to arise, both at the group and individual
levels. In contrast to the classical framework of Phelps (1972), the two-stage nature of hiring process
and the distinct informational advantages of the two groups—namely, group m’s pre-interview score
(resp., group w’s interview) being more informative than that of the other group—make the direction
of discrimination highly non-trivial and introduce different channels of discrimination.

Analysis of a Single-firm Model: Limitation of the Rooney Rule. We begin our analysis
by focusing on a single-firm setting (Section 3). We first characterize the firm’s optimal group-aware
solution without any policy intervention and show that it takes an intuitive greedy form in both
stages (see Section 1.2 for further discussion of our benchmark). That is, the firm interviews (resp.,
hires) candidates with scores (resp., match values) above an interview (resp., hiring) threshold. Both
thresholds are determined endogenously and interdependent. With this structural results, we show
that, without any intervention, group w candidates will be interviewed (and then hired) at a lower rate
than group m, for sufficiently low interview capacity (Theorem 1). Inspired by real-life policies such as
the Rooney rule, we then consider an interview-stage intervention where the firm requires a minimum
representation of group w among the interviewees. Hereafter, we use the term “the Rooney rule” to
refer to this class of interview-stage interventions.

Our first main result is that imposing equal representation at the interview stage does not translate
into equal representation in hiring outcomes: Group w candidates end up being hired at a lower rate
than group m (Proposition 2). Even more strikingly, we show that in certain regimes, the firm may
organically interview more group w candidates than group m candidates—rendering the intervention
ineffective—yet still hire fewer from group w (Theorem 1 and Figure 2). These findings might seem
counter-intuitive since group w’s interviews are more informative than group m and at the same
time match values have identical distributions. However, the greedy nature of the selection strategy
for interviews acts as a filtering mechanism that favors more informative pre-interview scores (see
Figure 1). Notably, this disparity arises due to limited interview capacity: with unlimited interviews,
group w’s more informative interviews would counterbalance their less informative pre-interview scores,
but under the limited interview capacity, group w is systematically disadvantaged.

To analyze how the firm optimally allocates its limited interview capacity, we reveal a novel capacity-
information trade-off that the firm faces, which can be viewed through an “exploration”-“exploitation”
lens (Section 3.2.2). On the one hand, the firm wishes to interview more group w candidates since their
interviews are more informative (“exploration”). On the other hand, due to limited interview capacity,
the firm also prefers “safer” candidates from group m, whose pre-interview scores are more predictive



Farajollahzadeh et al.: Why the Rooney Rule Fumbles 5

of their match values (“exploitation”). At lower interview capacity, the firm conservatively interviews
most candidates from group m, but as its interview capacity increases, the firm becomes more open to
the group w. From a technical perspective, the endogeneity of the firm’s optimal hiring threshold adds
technical complexity to the optimization problem. Our proof uses novel geometric arguments to address
these technical challenges, characterizing three curves of interview thresholds: the iso-interview curve,
the iso-hiring curve, and the optimal interview threshold curve as a function of interview capacity (see
Section 3.2.3 and Figure 2-(b)).

At an individual level, the Rooney rule might benefit or harm different subgroups of candidates
(Proposition 3). Overall, the candidate-level competition weakens across the interviewees, due to the
endogenous change of hiring thresholds. Thus, “strong” candidates from both groups (i.e., those with
sufficiently high scores) benefit from the intervention, since their hiring probability increases. For “bor-
derline” candidates (i.e., those with scores near the interview thresholds), the Rooney rule redistributes
interview opportunities from group m candidates to group w candidates. As a result, only group w

candidates benefit at the expense of group m.
Our results are aligned with empirical findings that document the limited effectiveness of the Rooney

rule in practice (as motivated earlier). Thus, in contrast to several theoretical works (Kleinberg and
Raghavan 2018, Emelianov et al. 2020, Celis et al. 2021) that predict a positive impact of the Rooney
rule, our results offer a different perspective, highlighting the limitations of such interventions. A key
distinction lies in our modeling of the intermediate interview stage, as prior works typically assume a
one-stage hiring process (see Section 1.2 for further discussion). Our results suggest that incorporating
this feature into the operation of the market not only reflects the real-world better but also uncovers
new channels—purely rational and statistical—that contribute to eventual disparity in hiring outcomes.

Analysis of Two-firm Model: Downstream Effects of the Rooney Rule. In the real world,
firms rarely hire in isolation; they compete with each other for talents from the same pool of candidates.
At the same time, interventions such as the Rooney rule are not universally adopted or enforced.3

Motivated by these observations, we study the impact of these interventions in a two-firm vertically dif-
ferentiated setting (Section 4). Both firms share the same pool of candidates (that consists of equisized
groups m and w); however, only the top firm adopts the Rooney rule.

The hiring process remains almost identical in this two-firm setting: each firm undergoes its own
interview-stage process;4 however, the lower-ranked firm now faces competition from the top firm
because all candidates prefer the top firm. Incorporating competition has a profound impact on the
strategy of the lower-ranked firm: we show that in equilibrium the lower-ranked firm’s optimal interview

3 For example, a public report (Diversity Lab 2023) by a Mansfield certifier for law firms reveals that, there were at
most 175 large-sized (resp., 65 mid-sized) law firms in the U.S. that were Mansfield certified in 2023, out of 264 large
(resp., 168,044 mid-sized) firms in total (U.S. Census Bureau 2025).
4 We remind that while candidates’ pre-interview scores are shared across firms, their conditional match value revealed
upon interview is independently drawn across firms.
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strategy is not necessarily greedy (see Proposition 4 and Figure 3).5 The lower-ranked firm may forego
interviewing “superstar” candidates that are highly likely to be hired by the top firm. Instead, the
lower-ranked firm may include “borderline” candidates not interviewed by the top firm.

With these structural results, we investigate the impact of the top firm’s adoption of the Rooney
rule. As discussed before, under the Rooney rule, the top firm replaces borderline group m candidates
in its interview set with borderline group w candidates. Unburdened by the competition from the top
firm, the lower-ranked firm may now include these borderline group m candidates in its interview set.
As a domino effect, borderline group w candidates at the lower-ranked firm lose their interview spots.
At a group level, this may lead to the hiring of fewer group w candidates by the lower-ranked firm
(Proposition 5). This loss in hiring by the lower-ranked firm is not necessarily offset by the gain in hiring
at the top firm: we find examples where overall fewer group w candidates are hired across the market.
This primarily stems from the following: adoption of the Rooney rule weakens (resp., strengthens) the
firm-level competition for group m (resp. w).

At an individual level, similar to the single-firm setting, “superstar” candidates from both groups—
that is, candidates with exceptional scores who are exclusively interviewed by the top firm—gain due
to weakened candidate-level competition in the top firm. However, somewhat surprisingly, the impact
on borderline candidates may reverse: borderline group w candidates who gained an interview spot at
the top firm but lost one in the lower-ranked firm may have a lower hiring probability because they face
a stronger candidate-level competition. On the other hand, group m candidates who lost their spot in
the top firm but now are interviewed by the lower firm may face a weaker candidate-level competition
and thus have a higher hiring probability (Proposition 7). In contexts where being hired (by either
firm) is substantially preferred over not being hired, our finding implies that adopting the Rooney rule
can hurt some individuals in group w.

Overall, our results have profound policy implications: the non-universal nature of policies such as
the Rooney rule may indeed hurt the very group it intends to help at a group and individual level. More
broadly, our findings on the impact of the Rooney rule (in isolation or at the market level) highlight the
challenges of improving representation in hiring outcomes using interview-stage interventions—often
viewed as a form of “soft” affirmative action to create equal opportunities. Even in the absence of
inherent biases or structural barriers, the interplay between information asymmetry and operational
factors—such as limited interview capacities and competition—may limit the positive effect of such
interventions or even lead to negative consequences.

We conclude by highlighting that a byproduct of our work is developing a natural framework for
labor markets with interviews and characterizing its equilibrium. Furthermore, our equilibrium charac-
terization as well as our comparative analysis (with vs. without intervention) involve many intricacies

5 Our structural results sharply deviate from those of Vohra and Yoder (2023), which studies a similar model (motivated
by questions unrelated to the Rooney Rule), as we discuss in detail in Section 1.2.
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largely due to the interdependency between the interview and hiring decisions across groups and firms.
Our framework and analysis can serve as a useful basis for future research in the areas of matching
with interviews (Manjunath and Morrill 2023, Vohra and Yoder 2023, Ashlagi et al. 2025) and fairness
in hiring processes (Hu and Chen 2018, Kleinberg and Raghavan 2018, Emelianov et al. 2020).

1.2. Related Literature
Our work broadly contributes to multiple strands of related literature, including statistical discrimi-
nation, (algorithmic) fairness in operations, and interviews in matching markets.

Statistical discrimination. The economics literature has proposed two prominent theories of discrim-
ination: taste-based discrimination (Becker 1957) and statistical discrimination (Arrow 1971, Phelps
1972). Our framework builds on the seminal work of Phelps (1972) on statistical discrimination theory,
where discrimination arises from differential evaluation uncertainty between two equally skilled groups.
Building on Phelps (1972), we study the impact of differential evaluation uncertainty in a labor market
with competition and a two-stage hiring process.

Several recent works extend Phelps’ model in different dimensions (Kannan et al. 2019, Emelianov
et al. 2020, Garg et al. 2020, Baek and Makhdoumi 2023). Closest to ours are the work of Garg et al.
(2020) and Kannan et al. (2019). In the context of college admissions, Garg et al. (2020) extend Phelps’
model to multiple features, strategic students facing test costs, and school-level competition. Their
model is one-stage, as the final admission decision depends solely on a composite noisy signal of a
student’s true skill. In contrast, our two-stage model bases the eventual hiring decision on the match
values revealed during the interview, rather than relying on a noisy signal (pre-interview score). This
two-stage nature allows us to model the distinct informational advantages of the two groups at each
stage, making the overall direction of disadvantage nontrivial.

Kannan et al. (2019) considers a two-stage Gaussian model in which a college admits students based
on test scores, and an employer hires graduates based on grades—both being noisy signals of true
skill. However, in their model, the school and employer are distinct decision-makers. Importantly, the
college in the first stage does not solve an optimization problem; rather, the focus of Kannan et al.
(2019) is on the existence of admission rules that ensure a certain notion of fairness rather than on
optimal decision-making. In contrast, our model features a fully rational firm that optimizes hiring
decisions across both stages, introducing technical complexities due to the interdependence between
these decisions. Thus, our focus is on discrimination arising from such rational decision-making.

There is also an extensive line of empirical and experimental work documenting (statistical) dis-
crimination in labor markets. The meta-analysis of field experiments by Quillian et al. (2017) shows
no change in racial discrimination in hiring over time. Comprehensive surveys on the empirical stud-
ies of statistical discrimination can be found in Fang and Moro (2011), Guryan and Charles (2013),
and Onuchic (2022). Our work compliments this literature by providing a theoretical framework of
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statistical discrimination that incorporates both interviews and competition, and by studying why
interview-stage diversity interventions may have limited impact with or without firm-level competition.

Fairness in operations. Motivated by societal, ethical, and legal considerations, a growing body of
work studies fairness in operational decisions arising in a broad set of applications ranging from retail
(e.g., pricing and assortment planning (Chen et al. 2022, Cohen et al. 2022, Manshadi et al. 2023b))
to public policy (e.g., college admissions (Bonet et al. 2024, Larroucau et al. 2024, Sirolly et al. 2024))
to political domains (Flanigan et al. 2021, Garg et al. 2022, Agiza et al. 2024). Additionally, while
previously fairness has been mainly studied in static settings (Bertsimas et al. 2011), several recent
papers focus on dynamic settings and conceptualize new notions of fairness (Freeman et al. 2017,
Gupta and Kamble 2021, Allouah et al. 2023, Manshadi et al. 2023a). In the specific context of hiring,
prior work has studied long-term fairness in labor markets (Hu and Chen 2018), fairness in sequential
search (Aminian et al. 2023, Salem and Gupta 2024), fairness in online labor markets (Monachou and
Ashlagi 2019, Gonzalez-Cabello et al. 2024), and algorithmic bias in resume screening (Cowgill 2020).
For a survey on the topic of algorithmic fairness in hiring, the reader may refer to Fabris et al. (2024).

In particular, the Rooney rule has recently attracted attention in the fairness literature (Kleinberg
and Raghavan 2018, Emelianov et al. 2020, Celis et al. 2021, Komiyama and Noda 2024, Kim et al.
2025), mainly focusing on its positive impact.6 Our work contributes to this line of research by being
the first to study the Rooney Rule beyond a single firm in a market with firm-level competition (Sec-
tion 4). By doing so, our model not only uncovers new mechanisms for potentially negative downstream
effects of the Rooney Rule but also highlights that insights from single-firm models do not necessarily
generalize to more realistic settings with competition. In addition to studying the competition which
sets our work apart from the prior works, even our single-firm setting has fundamental differences from
closely related papers. We elaborate on these differences next.

Kleinberg and Raghavan (2018) study a discrete hiring model where a committee selects candidates
to maximize the total potential. One group’s potential is correctly observed, while the other’s is subject
to a constant multiplicative bias; their potential is drawn from the same Pareto distribution. They find
that measures like the Rooney rule, which require selecting at least one candidate from the disadvan-
taged group, improve both representation and utility compared to the group-unaware approach. Our
work differs in key ways: First, we adopt a statistical discrimination approach instead of assuming a
fixed multiplicative bias. In other words, in our model there is no inherent bias against any group; the
only difference between the groups is the informativeness of their pre-interview scores and interview
process. Second, in Kleinberg and Raghavan (2018), the firm bases its one-stage decision on biased

6 A notable exception is Fershtman and Pavan (2021), who examine potential negative effects of soft affirmative
action. A key distinction from our paper lies in the hiring model: they consider “dynamic interviewing,” where a firm
sequentially decides whether to expand their evaluation pool or assess a candidate already in the pool. In contrast, we
adopt “batch interviewing,” where firms pre-select a set of candidates, conduct all interviews at once, and then make
hiring decisions. This structural difference leads to distinct mechanisms through which soft affirmative action may fail.
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information. However, in our two-stage model, the firm hires candidates based on true (match) values.
As such, the underlying channels for discrimination are different.

Emelianov et al. (2020) study a statistical discrimination model with Gaussian distributions. While
their base model is one-stage, they also consider a two-stage model in which the firm interviews candi-
dates based on a noisy signal before hiring them based on true skills. The variance of the noisy signal
varies across groups. Similarly, we assume that the variances of pre-interview scores differ between
the two groups. However, a key difference is that, in their work, the firm is agnostic to such differ-
ences across groups and thus takes a group-unaware approach. In contrast, we adopt a group-aware
framework where the firm, facing a continuum of candidates, knows each group’s variance parameters
and optimizes hiring decisions accordingly. We further show that leveraging this knowledge improves
both diversity and utility compared to a group-unaware solution (see Appendix EC.3.12). Given that
estimating population-level first-order statistics, such as variances, is plausible in various applications,
the group-aware benchmark serves as a natural comparison point. Moreover, we analyze diversity out-
comes under the group-aware benchmark in the two-stage setting and provide new insight into the
limitations of the Rooney rule as well as its individual-level impacts (see Section 3.3).

Finally, the recent work of Kim et al. (2025) studies a two-stage hiring model where a minority group
faces both multiplicative bias (as in Kleinberg and Raghavan (2018)) and statistical discrimination (as
in Emelianov et al. (2020)). They show that first-stage interventions (such as the Rooney rule) are
more effective than those at the second stage. A key distinction between our work and theirs is the
incorporation of capacity constraints. Kim et al. (2025) assume no such constraints at either stage,
instead modeling each stage with a fixed cost per candidate. In many real-world applications, however,
fixed capacities are a natural operational constraint. Moreover, these constraints fundamentally impact
both the theoretical analysis and findings. For instance, in Kim et al. (2025), the (second-stage) hiring
threshold is exogenously set by the unit cost of hiring. As a result, first-stage interventions in their
model do not affect this threshold or candidate-level competition. By contrast, in our model, the
hiring threshold is endogenously determined by the interview set due to fixed capacities. Consequently,
the Rooney Rule influences not only interview selection but also the hiring threshold. Notably, this
adjustment reduces candidate-level competition, thereby benefiting strong candidates (Proposition 3).

Interviews in matching markets. A growing body of work explores matching with interviews,
including Kadam (2015), Lee and Schwarz (2017), Echenique et al. (2022), Manjunath and Morrill
(2023), Vohra and Yoder (2023), and Ashlagi et al. (2025). The closest work to ours is Vohra and Yoder
(2023), which studies a similar two-stage hiring model motivated by market design questions unrelated
to the Rooney rule or fairness aspects. Their analysis relies on specific distributional assumptions,
particularly the “increasing k-yields” property for conditional match values. While a few distribu-
tions (e.g., exponential) satisfy this assumption, the normal distribution—a workhorse in statistical
discrimination—does not, nor does the Gumbel distribution—a workhorse in consumer choice modeling
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(see Remark 2). Consequently, the structural results in Vohra and Yoder (2023) do not apply to our
setting.7 In fact, this assumption fundamentally impacts the structure of interview sets in equilibrium:
while Vohra and Yoder (2023) prescribes that even the lower-ranked firm greedily interviews super-
stars, our characterization (Proposition 4) shows that the lower-ranked firm may forgo interviewing
superstars due to firm-level competition (see Remark 1 for more details).

2. Model
In this section, we present our baseline model featuring a single firm. Below, we outline the key com-
ponents of the firm’s two-stage hiring process. Then, we specify key assumptions regarding differences
between the two groups and define the benchmark model. Finally, we formally introduce a model
incorporating the interview-stage intervention. A table of key notation can be found in Appendix EC.1.

Candidates. A unit mass of candidates seek to be hired by the firm. Each candidate is characterized
by two observable attributes: their pre-interview score a ∈ R and their social group i ∈ {m,w}. The
pre-interview score a (henceforth, “score”) signals the candidate’s observable abilities, capturing factors
such as standardized test scores or prior experience. While informative, the score is an imperfect signal
of a candidate’s true value. We assume that the scores of candidates from group i follow a Normal
distribution, a | i∼N (0, σ2

i ), where σ2
i denotes the group-specific score variance.

Beyond their score, each candidate has a match value v, which is the candidate’s true value from
the firm’s perspective. However, candidates’ match values are ex-ante unknown to the firm. Instead,
candidates must undergo an interview, during which their match value v is observed. For a candidate
from group i with score a, the interview reveals the candidate’s match value drawn from the condi-
tional distribution v | {a, i} ∼N (a, τ 2i ), where τ 2i is the group-dependent variance of conditional match
values. This reflects that higher scores are associated with higher match values, but the interview also
reveals an idiosyncratic component of the candidate’s match value. An alternative way to interpret the
outlined interview process is to express the match value as v= a+ϵ, where ϵ | i∼N (0, τ 2i ) represents an
idiosyncratic interview signal observed only post-interview and independent of the score a. This resem-
bles the consumer choice modeling framework where a consumer’s utility consists of two component,
an intrinsic value and an idiosyncratic noise (Ben-Akiva 1985). Note that the ex-post (unconditional)
match value distribution of group i is given by v | i∼N (0, σ2

i + τ 2i ).
The Firm. The firm seeks to hire a mass ∆∈ (0,1) of candidates, with the goal of maximizing the

total match values of the hired candidates. Since the firm does not know the match values prior to
interviews, its hiring process unfolds in the following two stages.

7 For the same reason, we also highlight that the proof techniques in Vohra and Yoder (2023) do not apply to our
setting. Instead, to derive structural our result, we develop a novel meta-characterization (see Propositions EC.1 and
EC.2) that accommodates both Gaussian distributions and the class of distributions considered in Vohra and Yoder
(2023). As a byproduct, the greedy structure of the lower-ranked firm’s strategy in Vohra and Yoder (2023) follows
directly from our results (see Remark EC.1 and Appendix EC.5.1).
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(i) Interviewing: The firm selects which candidates to interview solely based on their observable
attributes (their score a and social group i ∈ {m,w}). Formally, for each group i ∈ {m,w}, the firm
selects an interview set Ai ⊆ R, such that only candidates from group i with scores a ∈Ai are inter-
viewed. The firm observes their match values drawn from the conditional distribution v | {a, i} ∼

N (a, τ 2i ), as described earlier. We assume that the firm has an interview capacity of C ∈ [∆,1].
(ii) Hiring: After the firm observes the match values v of interviewees, to maximize its total match

value, the firm greedily hires the candidates with the highest non-negative match values until it reaches
its hiring capacity ∆. This naturally leads to a threshold-based hiring policy where interviewees with
match values above a hiring threshold s≥ 0 are hired.

Social Groups. We consider an idealized setting where the two groups {m,w} are ex-post symmetric
in the sense that the two groups are equally-sized and equally-skilled. Specifically, the two groups have
the same population mass, and their match value distributions are identical. However, the groups differ
in the variances of their scores and interview signals. Formally, we make the following assumption:

Assumption 1 (Post-interview Identical but Pre-interview Non-identical Groups).
(a) The two groups have identical ex-post match value distributions: σ2

m + τ 2m = σ2
w + τ 2w.

(b) However, σm >σw and τw > τm.

Assumption 1-(a) implies that, from the firm’s perspective, both groups are inherently identical
in terms of their match values. Hence, in an ideal scenario with unlimited interview capacity, the
hiring decision would be based on the identical ex-post match value distributions, resulting in equal
representation of the two groups (given their equal population mass).

However, with limited interview capacity, the firm must select whom to interview solely based on
their scores and group identity. This brings us to Assumption 1-(b), which introduces an asymmetry
in their pre-interview score distribution. Specifically, we assume in part (b) that group m’s scores are
more informative of their match value than those of group w (σm >σw). This is in line with empirical
evidence showing differences in the informativeness of pre-interview measures across social groups.
For example, Machin and Pekkarinen (2008) and Baye and Monseur (2016) support the “greater male
variability hypothesis,” showing a higher representation of males in the tails of test score distribu-
tions. Furthermore, Rothstein (2004) shows that SAT scores are more informative for high-income
than low-income students. Additionally, this assumption is aligned with the literature on statistical
discrimination (in one-stage models) once we view our score as the counterpart of the “skill estimate”
that the firm forms, based on which it makes a decision. For instance, building on Phelps (1972), Garg
et al. (2020) show that the differential informativeness in the features across social groups leads to
lower variance in the skill estimates of the minority group (see their Lemma 1 and Figure 1).

Note that, due to the post-interview symmetry implied by part (a), group m’s higher informativeness
in their scores must be coupled with a less informative interview (τm < τw). That is, each group has
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a distinct informational advantage: group m’s pre-interview score is more informative, whereas group
w reveals more information during the interview.8 Given this non-trivial information asymmetry and
limited interview capacity, the rational firm carefully optimizes its interview and hiring decision to
maximize the total match value of the hired candidates.

Firm’s Optimization Problem (Benchmark). We now formally state the firm’s optimization
problem. For each group i, let Hi(a) and hi(a) denote the cumulative distribution function (C.D.F.)
and probability density function (p.d.f.) of their respective score distributions. Similarly, let Gi(v | a)

and gi(v | a) denote the C.D.F. and p.d.f. of the conditional match value distribution, with Ḡi(v | a) =

1−Gi(v | a) denoting the complementary C.D.F. As highlighted earlier, the firm selects an interview
set based on the candidate’s score a and group identity i, which we denote by A = (Am,Aw). The
firm further selects a non-negative hiring threshold s to maximize the total match value of the hired
candidates. Formally, the firm solves the following optimization problem:

(Benchmark) max
Am,Aw⊆R

s≥0

∑
i∈{m,w}

0.5

∫
Ai

∫ ∞

s

vgi(v | a)hi(a)dv da (1)

s.t.
∑

i∈{m,w}

0.5

∫
Ai

hi(a)da=C (2)

∑
i∈{m,w}

0.5

∫
Ai

Ḡi(s | a)hi(a)da≤∆ (3)

We refer to this optimization problem as (Benchmark). The objective function (1) represents the total
match value of the hired candidates.9 Note that, even in a group-aware framework, the firm maximizes
its overall match value by setting the same hiring threshold for the two groups. Constraint (2) ensures
that the interview mass equals interview capacity C.10 Constraint (3) ensures that the hiring mass
does not exceed hiring capacity ∆. We emphasize that the hiring capacity constraint (3) is expressed
as an inequality. This choice is intentional: it may not always be optimal to fully fill the hiring capacity
∆ since the match values can be negative (see Proposition 1).

We use A∗ = (A∗
m,A

∗
w) and s∗ to denote the optimal solution of (Benchmark). We further define ρ∗

and π∗ as the optimal interview and hiring fractions of group w, respectively:

ρ∗ :=
0.5
∫∞
A∗

w
hw(a)da

C
, π∗ :=

∫
A∗

w
Ḡw(s

∗ | a)hw(a)da∑
i∈{m,w}

∫
A∗

i
Ḡ(s∗ | a)hi(a)da

. (4)

8 In reality, one group’s interview may not necessarily be more informative than the other’s. However, we emphasize
that our assumption, τm < τw, is necessary to capture an idealized setting where there is no inherent difference in the
true match values between the two groups. If instead τm = τw, hiring disparities persist even with unlimited interview
capacity. Specifically, when ∆< 0.5, the group w is consistently hired less than group m even if C = 1.
9 Because the firm faces a continuum (i.e., infinite) candidates, we implicitly use the law of large numbers to formulate
its optimization problem as deterministic—see Proposition 2.1 of Emelianov et al. (2020) for technical details.
10 It is straightforward to show that, even if the constraint (2) is expressed as a weak inequality, it remains optimal for
the firm to fully utilize the interview capacity C.
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That is, if ρ∗ < 0.5 (resp., π∗ < 0.5), group w is under-represented in the interview-stage (resp., final
hiring outcome) under the optimal solution of (Benchmark).

Interview-stage Intervention (ρ-Rooney rule). Motivated by potential disparities arising in
the benchmark and policies like the Rooney rule, we consider an interview-stage intervention that the
firm may adopt to increase the representation of group w in the final hiring outcome. Concretely, we
formalize this intervention as the ρ-Rooney rule, which requires that the fraction of group w candidates
in the interview set must be at least ρ∈ (0,1):

0.5

∫
Aw

hw(a)da≥ ρC (ρ-Rooney rule)

Hereafter, we interchangeably use the ρ-Rooney rule and the interview-stage intervention. When the
firm adopts ρ-Rooney rule, with the same two-stage hiring process outlined earlier, the firm solves the
following optimization problem:

(Intervention) max
Am,Aw⊆R

s≥0

∑
i∈{m,w}

0.5

∫
Ai

∫ ∞

s

vgi(v | a)hi(a)dv da s.t. (2), (3), (ρ-Rooney rule)

We often refer to this optimization problem as (Intervention). We use Aρ = (Aρ
m,A

ρ
w) and sρ to denote

the optimal solution under the ρ-Rooney Rule.

3. Analysis of the Single-Firm Model
In this section, we examine the impact of the ρ-Rooney Rule in the single-firm model. We first charac-
terize the firm’s optimal decision in Section 3.1, then explore the group-level and individual implications
of the ρ-Rooney rule in Section 3.2 and Section 3.3, respectively.

3.1. Structural Results
We begin by characterizing the firm’s optimal interview set and hiring threshold under (Benchmark).
In the following proposition, we show that the firm’s optimal decisions for interview and hiring have a
greedy structure. (For x∈R, we use x+ to denote a positive part of x, i.e., x+ =max{x,0}.)

Proposition 1 (Characterization of Benchmark Optimal Solution). The firm’s optimal
interview set A∗ = (A∗

m,A
∗
w) and hiring threshold s∗ uniquely exist and are jointly determined as follows:

(a) Greedy Optimal Interview Set: Let Fi(a, s
∗) := E[(v − s∗)+ | a, i]. Then, the firm’s optimal

interview set A∗
i for each group i is a super-level set of Fi(a, s

∗), i.e.,

A∗
i = {a∈R : Fi(a, s

∗)≥ θ}, (5)

where level θ is chosen to satisfy the interview capacity constraint (2). Furthermore, there exists
interview threshold a∗i ∈R such that A∗

i = [a∗i ,∞).
(b) Greedy Optimal Hiring Threshold: The optimal hiring threshold s∗ satisfies

s∗ =min
{
s≥ 0 :

∑
i∈{m,w}

0.5

∫
A∗

i

Ḡi(s | a)hi(a)da≤∆
}
. (6)
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Proposition 1 establishes that the optimal interview set and hiring threshold uniquely exist and
exhibit interdependent greedy structures. Specifically, within each group, the firm selects candidates to
interview greedily based on their pre-interview scores (part (a)). Consequently, the firm only needs to
determine the interview thresholds a∗ = (a∗m, a

∗
w) for each group — see Figure 1-(a) for an illustration

of this greedy interview set. Post-interview, the firm’s hiring strategy is similarly greedy: the firm hires
the interviewees with the highest non-negative match values v until it fills its hiring capacity (part (b)).
Notably, due to the capacity constraints, the optimal interview sets and hiring threshold jointly depend
on each other (Equations (5) and (6)), adding technical complexity to finding the optimal solution.

The greedy structure of the interview set is driven by the function Fi(a, s
∗) = E[(v − s∗)+ | a, i],

referred to as the excess value function, which represents the expected additional match value of a
candidate from group i with score a, above the optimal hiring threshold s∗. Intuitively, it captures how
valuable a candidate is to the firm relative to the hiring threshold. As such, the firm orders candidates
based on their excess value and interviews all candidates above common level θ, regardless of their
group (see Equation (5)). The high-score candidates naturally have greater potential to reveal higher
match values, and therefore Fi(a, s

∗) increases with a (we formally prove this in Appendix EC.3.2).
Thus, the optimal interview set in Equation (5) is greedy in the score a. Furthermore, given the optimal
hiring threshold s∗, Equation (5) uniquely determines the interview set A∗

i (and the corresponding
interview threshold a∗i ) by selecting the level θ that satisfies the interview capacity constraint (2).

We prove Proposition 1 in Appendix EC.2 and EC.3.2. First, we establish Equations (5) and (6)
as necessary optimality conditions through proof by contradiction. Specifically, we show that if the
pair of optimal interview set (A∗

m,A
∗
w) and hiring threshold s∗ fails to satisfy these conditions, we

can construct an alternative feasible pair that strictly improves the firm’s objective (1). To do so, we
use an intricate exchange argument that replaces certain candidates in the interview set with others
who yield a higher excess value, while adjusting s∗ accordingly to respect the hiring capacity. Next,
we establish uniqueness by showing that a solution satisfying the optimality conditions (5) and (6)
uniquely exists. (Note that this further implies that Equations (5) and (6) are also sufficient conditions
for optimality.) If the hiring threshold s∗ were known, the interview set (A∗

m,A
∗
w) would be uniquely

determined by Equation (5). However, s∗ itself depends on (A∗
m,A

∗
w) through Equation (6). Based on

these observations, we reformulate the system of Equations (5) and (6) as a fixed point equation for s∗.
In Proposition EC.2, we show that such a fixed point uniquely exists. Finally, in Appendix EC.3.2, we
establish that the excess value Fi(a, s

∗) increases in a using the notion of likelihood ratio order (Shaked
and Shanthikumar 2007), which directly leads to the greedy structure of A∗

i .
While the firm’s optimal interview set is greedy in scores within each group, the interview thresholds

a∗m and a∗w may differ. This difference arises because conditional on the same score, group w candidates’
match values have higher variance than group m (Assumption 1). Thus, the rational firm must account
for group w’s potential to reveal more extreme match values during interviews. Formally, we show that
a∗w <a

∗
m in the following corollary, which we prove in Appendix EC.3.3.
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Corollary 1 (Lower Optimal Interview Threshold for Group w than Group m). The

optimal interview threshold for group w is strictly lower than that for group m, i.e., a∗w <a∗m.

We prove Corollary 1 in Appendix EC.3.3. The proof leverages the optimality condition (5), which

establishes an intuitive relationship between the interview thresholds: the excess value must be equal

at the interview thresholds for both groups, i.e.,

Fm(a
∗
m, s

∗) = Fw(a
∗
w, s

∗). (7)

We refer to this equation as the balance condition. Using the fact that τw > τm (Assumption 1), we show

that this condition can only hold when a∗m >a∗w through the notion of increasing convex order (Shaked

and Shanthikumar 2007) (see Appendix EC.3.1 for a formal definition).

We conclude this section by characterizing the optimal solution under the ρ-Rooney rule. If the

optimal solution under (Benchmark) satisfies the ρ-Rooney rule (i.e., ρ ≤ ρ∗; see Equation (4)), the

firm’s solution remains unchanged. Otherwise, the following corollary, proven in Appendix EC.3.4,

shows that the firm adjusts the interview thresholds to ensure that group w’s interview fraction equals

ρ. Specifically, the firm lowers the interview threshold for group w while raises it for group m.

Corollary 2 (Characterizing the Optimal Solution under the ρ-Rooney rule). For any

ρ ∈ [0,1], the firm’s optimal interview set Aρ = (Aρ
m,A

ρ
w) and hiring threshold sρ under the ρ-Rooney

rule uniquely exist and are jointly determined as follows:

(a) The optimal interview set for group i is given by Aρ
i = [aρi ,∞), where aρw is given by

aρw =

{
a∗w if ρ≤ ρ∗

H−1
w (1− 2ρC) otherwise,

(8)

and aρm is uniquely determined by the interview capacity constraint (2). Furthermore, we have

aρm >a
∗
m and aρw <a∗w whenever ρ> ρ∗.

(b) The optimal hiring threshold sρ satisfies:

sρ =min
{
s≥ 0 :

∑
i∈{m,w}

0.5

∫
A

ρ
i

Ḡi(s | a)hi(a)da≤∆
}
. (9)

3.2. Group-level Implications of Interview-Stage Intervention

Equipped with the structural characterization in Proposition 1 and its corollaries, we now analyze

impacts of (ρ-Rooney rule) on group-level hiring outcomes. Our main focus is the 0.5-Rooney Rule,

which represents the most natural and ideal form of the ρ-Rooney Rule given the equal population

mass of the two groups. However, our qualitative insights extend to general values of ρ.
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3.2.1. Equal Interview Representation
To build intuition, suppose for a moment that the firm uses a greedy interview set (similar to Propo-

sition 1 and Corollary 2) but requires the two groups to be interviewed at the same rate. Specifically,
for any limited interview capacity C < 1, the firm follows the interview threshold a′ = (a′m, a

′
w) such

that the interview mass of both groups equals 0.5C. Would such a policy lead to equal representation
in the hiring outcome? If not, which group would face a disadvantage? A priori, the answer is not clear
since the two groups have distinct informational advantages: compared to group m, group w’s scores
are less informative, whereas their interview signals are more informative about their match value.

Note that, under the equal interview rates, comparing the hiring masses of the two groups reduces
to comparing their conditional distributions of match value v given that a candidate is interviewed
(i.e., v | {a≥ a′i, i}). To do so, it is instructive to study the group i’s posterior distribution of score a
given match value v. Since a | i ∼N (0, σ2

i ) and v | {a, i} ∼ N (a, τ 2i ), the posterior score distribution
is a | {v, i} ∼ N

(
σ2
i

σ2
i +τ2i

v,
(

1
σ2
i
+ 1

τ2i

)−1)
. Therefore, the posterior mean of a group i candidate’s score

given match value v, normalized by its posterior standard deviation, is given by:

E[a | v, i]√
Var[a | v, i]

=
σi

τi

v√
σ2
i + τ 2i

. (10)

Equation (10) suggests the greater power of pre-interview scores compared to interview signals in
this two-stage hiring process. Specifically, given Assumption 1, the normalized posterior mean of scores
in Equation (10) is higher for group m than for group w when v is positive. Thus, group m candidates
with high v tend to have higher pre-interview scores on average, relative to their variance, compared
to their group w counterparts. This creates an informational advantage for group m.

a∗ma∗w

m
w

a

(a)

v

(b)

v

(c)

Figure 1 Panel (a): the firm’s optimal interview strategy (greedy in the score for each group; see Proposition 1).
Panel (b): Density of v | {a≥ a′

i, i} where the interview threshold a′ = (a′
m, a′

w) equalizes the interview mass for both
groups. Panel (c): Complementary C.D.F of the same distribution from panel (b) (see Proposition 2).

If the firm did not face an interview capacity constraint, group w’s more informative interview
signals would ultimately counterbalance group m’s informational advantage in pre-interview scores.
However, under limited interview capacity (thus the interview threshold a′ being finite), the firm’s
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greedy interview structure, which prioritizes candidates with higher scores, acts as a filtering mechanism
that leverages group m’s advantage. Specifically, it makes group m candidates with positive v more
likely to enter the interview set compared to their group w counterparts. Consequently, due to the
equal interview rates, group m’s conditional distribution of v given being interviewed, v | {a≥ a′m,m},
shifts to the right relative to group w’s, v | {a≥ a′w,w} as we illustrate in Figure 1-(b).

This rightward shift results in the stochastic dominance of the match value distribution for group
m interviewees over that of group w interviewees. Specifically, due to the higher normalized posterior
mean of scores in Equation (10) for group m and the fact that both groups are interviewed at equal
rates, the density function of v | {a≥ a′m,m} intersects that of v | {a≥ a′w,w} only once, with group
m having higher density for larger v—see Figure 1-(b). This single-crossing property leads to the
stochastic dominance of v | {a ≥ a′m,m} over v | {a ≥ a′w,w}, as confirmed in Figure 1-(c) via the
complementary C.D.F.s of the two distributions. Consequently, for any finite hiring threshold s, the
right tail of v | {a ≥ a′m,m} has greater mass than that of v | {a ≥ a′w,w}. This implies that, under
equal interview rates, group m is hired at a higher rate than group w. We summarize and formalize
this intuition in the following proposition, which we prove in Appendix EC.3.5.

Proposition 2 (Group w is Under-represented in Hiring under Equal Interview Rates).
For any limited interview capacity C < 1 and interview threshold a′ = (a′m, a

′
w) that equalizes the

interview mass of the two groups, the resulting hiring mass of group w is strictly less than that of group
m for any finite hiring threshold s. Formally, if the finite interview threshold a′ = (a′m, a

′
w) satisfies∫ ∞

a′m

hm(a)da=

∫ ∞

a′w

hw(a)da, (11)

then, for any finite s, we have∫ ∞

a′m

Ḡm(s | a)hm(a)da>

∫ ∞

a′w

Ḡw(s | a)hw(a)da. (12)

Proposition 2 highlights the limited impact of the 0.5-Rooney rule: even if the firm ensures demo-
graphic parity at the interview stage, group w remains under-represented in the final hiring outcome.
This result suggests that the hiring disparity does not stem from the unequal representation at the
interview stage, but rather from structural differences in the informativeness of candidate’s signals and
limited interview capacity. Although in our idealized setting interview signals favor group w, the firm’s
greedy interviewing strategy amplifies group m’s pre-interview advantage, perpetuating the disparity
from the pre-interview stage to the final hiring outcome.

3.2.2. Optimal Interview Representation
In its optimal decision-making, the firm does not necessarily interview the two groups equally.

Specifically, the 0.5-Rooney rule can meaningfully alter the firm’s decisions only if (Benchmark) violates
the rule (see Corollary 2). Otherwise, if the firm already finds it beneficial to comply with the rule, the



18 Farajollahzadeh et al.: Why the Rooney Rule Fumbles

Figure 2 Panel (a): the interview and hiring fraction of group w (Theorem 1). We vary interview capacity C

while fixing other parameters ∆=0.01 and (σ2
m, σ2

w) = (τ2
w, τ

2
m) = (6,4), with the horizontal axis representing the

normalized interview capacity (C/∆). Panel (b): proof sketch of Theorem 1.

intervention has no impact on hiring outcomes. Thus, the key to assessing the 0.5-Rooney rule’s effect

is understanding the firm’s optimal interview representation of group w under (Benchmark).
We find that the representation of group w under (Benchmark) depends on the interview capacity

C. Specifically, the firm faces a trade-off in allocating its limited interview slots between the two

groups. On the one hand, compared to group m, group w candidates have less informative scores. On

the other hand, group w candidates reveal more information during interviews than group m. This

can be seen through an “exploration’’-“exploitation” lens. Interviewing group w candidates involves

“exploration’’—taking chances on candidates whose high match values might be revealed only through

the interview. In contrast, interviewing group m candidates represents “exploitation’’—selecting “safe’’

candidates whose scores already provide strong signals about their match values. When C is small

(relative to ∆), the firm must allocate its limited interview slots carefully, making the cost of exploration

higher. Consequently, the firm prioritizes the safer, high-score group m candidates, leading to group

w’s under-representation in both the interview set and the hiring outcome. To illustrate this intuition,

Figure 2-(a) shows the interview and hiring fraction of group w candidates under (Benchmark) (orange

line) by varying C for a fixed ∆. In the figure, we observe that for small values of C (for example,

C/∆≤ 4), the firm interviews (and hires) fewer group w candidates compared to group m.

As C increases, the firm gains more capacity to explore, allowing it to interview more group w candi-

dates. This can even result in group w’s over-representation in the interview set. However, as highlighted

earlier, the firm’s greedy interview structure favors group m in the hiring outcome. Consequently,

and perhaps counterintuitively, for moderate values of C—where the firm focuses on “high-enough”

score candidates— group w may remain under-represented in the hiring outcomes despite being over-

represented in the interview set. Figure 2-(a) again confirms this intuition: for larger values of C (for

example, C/∆> 4), the firm interviews more group w but still hire fewer than group m.
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Impact of the 0.5-Rooney rule. In summary, when interview capacity C is small enough, the
firm under (Benchmark) under-represents group w in the interview set. As such, by Corollary 2, the
0.5-Rooney rule forces the firm to adjust its interview sets to impose equal interview rates, thereby
increasing group w’s interview mass. Naturally, this adjustment increases the group’s hiring mass.
However, as established in Proposition 2, it does not lead to equal representation in hiring (see red
triangles in Figure 2). When C is larger, the firm organically over-represents group w in interviews but
may still under-represent them in the final hiring outcome due to the filtering mechanism of greedy
interviews (as explained in Section 3.2.1). In this case, the 0.5-Rooney rule has no meaningful impact
on hiring outcomes, as (Benchmark) already satisfies the 0.5 Rooney rule — as shown in Figure 2.

We formalize all the above observations through the following theorem.

Theorem 1 (Limitations of the 0.5-Rooney rule). For small enough ∆, there exist interview
capacity thresholds C <C such that, under (Benchmark),
(a) The 0.5-Rooney rule has non-zero but limited effect: If C < C, group w is under-

represented in both of the interview set and hiring outcome (i.e., ρ∗ < 0.5 and π∗ < 0.5 where ρ∗

and π∗ are defined in Equation (4)). In this case, the 0.5-Rooney rule strictly increase group w’s
hiring mass, but the group still remains under-represented in the hiring outcome.

(b) The 0.5-Rooney rule has no effect: If C ∈ [C,C), group w is over-represented in the interview
set (i.e., ρ∗ ≥ 0.5) but under-represented in the hiring outcome (i.e., π∗ < 0.5). In this case, the
0.5-Rooney rule has no effect.

We outline the proof of Theorem 1 in the next subsection. Although Theorem 1 focuses on the 0.5-
Rooney Rule, our simulation suggests that its insights naturally extend to general ρ. For ρ≤ 0.5, group
w’s hiring fraction falls short of ρ when the firm adopts the ρ-Rooney rule. Figure 2-(a) illustrates this
for ρ= 0.45. Conversely, as implied by Proposition 2—particularly the strict inequality (12)—a value
of ρ above 0.5 may still fail to achieve equal hiring. This is because the only way to increase group
w’s hiring mass given a fixed interview capacity is to decrease (resp., increase) the interview threshold
of group w (resp., group m) — see Lemma EC.3 in Appendix EC.3.6. As an illustrative example,
Figure 2-(a) shows that even with ρ= 0.55, group w remains underrepresented in the hiring outcomes.

3.2.3. Proof Sketch of Theorem 1
In this section, we briefly sketch the proof of Theorem 1. A complete proof with a more detailed
outline can be found in Appendix EC.3.6. Consider a scenario where the firm follows a greedy strategy
for interviewing with an interview threshold vector a= (am, aw). In Figure 2-(b), fixing a sufficiently
small ∆, we display three different sets of the interview thresholds for group m (x-axis) and group w
(y-axis). The green curve represents the iso-interview curve, the set of interview thresholds where the
two groups are interviewed at equal rates (i.e., that satisfies Equation (11)). On the other hand, for
a fixed am, we show that there exists a unique value of aw that equates the hiring mass of the two
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groups, when the hiring threshold is optimally chosen given these exogenous interview thresholds. The
set of such interview thresholds, which we refer to as the iso-hiring curve, is displayed as the blue curve
in Figure 2-(b). See Definition EC.6 and Proposition EC.3 for a precise definition of the iso-interview
and iso-hiring curves. Intuitively, fixing group m’s interview threshold, group w’s interview and hiring
mass decrease as its interview threshold increases (see Lemma EC.3). Hence, the epigraph of the iso-
interview curve (resp., iso-hiring curve) represents the set of interview thresholds where group w is
under-represented in the interview set (resp., hiring outcomes).11 Finally, the purple curve represents
the optimal interview thresholds a∗ under (Benchmark) as the interview capacity C ≥∆ varies. The
curve moves downward and to the left as C increases, meaning that the firm interviews more candidates
from both groups by lowering their thresholds (we formally establish this in Appendix EC.3.9).

The crux of our proof is to examine how the curve of optimal interview thresholds intersects the
iso-interview and iso-hiring curves as the interview capacity C increases. Specifically, we build on
Figure 2-(b) to prove Theorem 1 in three steps. In Step 1, we show that the iso-interview curve
lies above the iso-hiring curve (Proposition EC.3), as illustrated by the relative positions of the blue
and green curves in Figure 2-(b). In Step 2, we show that the curve of optimal interview thresholds
intersects the iso-interview curve only once (Proposition EC.4). That is, (Benchmark) over-represents
group w in the interview set if and only if the interview capacity C exceeds some threshold C —
see the intersection of purple and green curves in Figure 2-(b). However, since a∗ varies continuously
with C (formally established in Appendix EC.3.9), the optimal interview threshold can intersect the
iso-hiring curve only when the interview capacity reaches some higher threshold C > C. In the final
step, we analyze the optimal interview and hiring representation of group w across two ranges of C:
(i) C <C (green-colored area in Figure 2-(b)), and (ii) C ∈ [C,C) (blue-colored area in Figure 2-(b)).
See Appendix EC.3.6 for details.

3.3. Individual-level Implications of Interview-Stage Intervention
While the ρ-Rooney rule may change the group-level hiring outcomes (Theorem 1-(a)), its impact is not
uniform across all candidates within the same group. Specifically, from Corollary 2, group m candidates
with scores a∈ [a∗m, a

ρ
m] lose interview opportunities, while group w candidates with scores a∈ [aρw, a

∗
w]

newly gain interview spots. In contrast, “strong” candidates with sufficiently high scores retain their
interview spots under both (Benchmark) and the ρ-Rooney rule. Motivated by these heterogeneous
changes in interview opportunities, we categorize candidates into groups based on their scores.

Definition 1 (Borderline vs. Strong Candidates). Given the ρ-Rooney rule, a candidate from
group i∈ {m,w} is classified as follows:

• Borderline candidate: If a∈ [aρw, a
∗
w] for group w and a∈ [a∗m, a

ρ
m] for group m.

• Strong candidate: If a> a∗w for group w and a> aρm for group m.

11 For function f :R→R, its epigraph is defined as epi(f) := {(x, r)∈R2 : f(x)≤ r}.



Farajollahzadeh et al.: Why the Rooney Rule Fumbles 21

The ρ-Rooney rule has a straightforward effect on borderline candidates: it increases the hiring
probability of borderline w candidates (from zero to positive) by granting them new interview oppor-
tunities, while decreasing the hiring probability of borderline m candidates (to zero) by reallocating
their interview spots to the borderline w candidates. For strong candidates, the impact of the ρ-Rooney
rule is more subtle. Although these candidates retain their interview opportunities, the rule changes
the composition of the interview set by including borderline w candidates and excluding borderline m
candidates. To understand how this shift affects strong candidates, it is helpful to first examine the
hiring probability of candidates right at the interview threshold under (Benchmark).

Recall that the optimal interview thresholds must satisfy the balance condition (7). Under Assump-
tion 1-(b) (τw > τm), this balance condition can only hold if Ḡm(s

∗|a∗m)> Ḡw(s
∗|a∗w) (see Lemma EC.5-

(a) in Section EC.3.9). In other words, at the optimal interview and hiring thresholds, group m candi-
dates must have a higher hiring probability than their group w counterparts. Roughly speaking, this is
because group w candidates at a∗w are more likely to have extreme match values—–either exceptionally
high or low compared to their scores. In contrast, group m candidates’ match values at a∗m are more
concentrated around their scores. Now, as the Rooney rule introduces more lower-score group w can-
didates into the interview set and excludes higher-score group m candidates, the composition of the
interview set only exacerbates this disparity in the hiring probability. We formalize this result below.

Lemma 1 (Hiring Probability at Interview Thresholds). For any ρ≥ ρ∗ where ρ∗ is defined
in (4), group m candidates at the interview threshold aρm have a higher hiring probability than group w
candidates at aρw. Formally, Ḡm(s

ρ | aρm)> Ḡw(s
ρ | aρw) for any ρ≥ ρ∗.

We prove Lemma 1 in Appendix EC.3.10. Lemma 1 suggests that the adoption of the ρ-Rooney rule
decreases candidate-level competition. To see this, suppose that the firm applies the ρ-Rooney rule
with ρ being infinitesimally larger than ρ∗. This replaces group m candidates at threshold a∗m (who
had a higher hiring probability) with group w candidates at a∗w (who had a lower hiring probability).
As a result, the overall competition within the interview pool weakens. Formally, this shift lowers the
hiring threshold, increasing the hiring probability for strong candidates in both groups. Furtheremore,
as ρ > ρ∗ continues to increase, the firm’s interview thresholds adjust continuously in ρ (Equation
(8)), leading to a progressive weakening of candidate-level competition. In other words, the ρ-Rooney
rule changes the composition of the interview set in a way that makes strong candidates appear more
competitive relative to the new interview set, thereby increasing their hiring probabilities.

We formalize all the above observations in the following proposition, proven in Appendix EC.3.11.

Proposition 3 (Individual-level Impact of the Interview-Stage Intervention). For any
ρ> ρ∗ where ρ∗ is defined in (4), the firm’s adoption of the ρ-Rooney Rule results in the following:
(a) Strong Candidates in Both Groups Gain: The hiring probability increases for strong can-

didates in both groups. Specifically, sρ ≤ s∗, with strict inequality whenever s∗ > 0.
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(b) Borderline Group w Candidates Gain: The hiring probability increases for borderline can-
didates in group w.

(c) Borderline Group m Candidates Lose: The hiring probability decreases for borderline can-
didates in group m.

4. Two-Firm Labor Market
In this section, we extend our base model to a labor market with two vertically differentiated firms. We
first introduce the extended model in Section 4.1 and characterize the unique equilibrium in Section 4.2.
We then examine the impact of non-universal adoption of the interview-stage intervention on hiring
outcomes at the market, both in group (Section 4.3) and individual (Section 4.4) levels.

4.1. Model
Extended Model Setup. A unit mass of candidates seeks employment at one of two firms, referred to
as Firm 1 and Firm 2 who make interview and hiring decisions in parallel. The two firms are vertically
differentiated in the sense that candidates have homogeneous preferences, strictly preferring Firm 1
over Firm 2. Candidates apply to both firms. The hiring process unfolds again in the two stages.

(i) Interviewing: Each Firm f ∈ {1,2} selects which candidates to interview based on their scores
and group identities. Formally, Firm f chooses an interview set Af,i ⊆ R, such that candidates from
group i are interviewed by Firm f if a∈Af,i. Each firm f has an interview capacity Cf . Notably, the
two firm’s interview sets may overlap since they compete on the same pool of candidates for hiring.

At the interview, Firm f observes the candidate’s true match value, which is drawn from the condi-
tional distribution v | {a, i} ∼N (a, τ 2i ). We assume that, although the pre-interview scores are common
across firms, conditional on a candidate’s score a and group i, the match values are drawn indepen-
dently for each firm. Similar to the single-firm model (Section 2), this assumption reflects that each
firm observes its own idiosyncratic component of the candidate’s match value during interviews.

(ii) Hiring: Each Firm f ∈ {1,2} aims to maximize the expected match values of its hired candidates
while respecting its hiring capacity ∆f . Thus, each firm adopts a threshold-based hiring strategy,
sending offers to candidates whose match values exceed a hiring threshold sf to fill its hiring capacity
∆f . Note that a candidate may receive offers from both firms; in this case, the candidate always accepts
the offer from (the more-preferred) Firm 1. Thus, from Firm 1’s perspective, nothing changes from
the single-firm model as it does not face any competition. However, Firm 2 will take into account the
firm-level competition when it chooses which candidates to interview and hire.

Benchmark vs. Intervention. Similar to the one-firm model, we consider two settings referred
to as (Benchmark) and (Intervention). Under (Benchmark), both firms are unconstrained. Under (Inter-
vention), Firm 1 adopts the ρ-Rooney rule, while Firm 2 remains unconstrained. As highlighted in
Section 1, this reflects a practice where interview-stage interventions are voluntarily adopted by leading
firms without a market-wide mandate (see Footnote 3). Similar to the single-firm model (Section 2), we
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use ρ∗ to denote the Firm 1’s optimal interview fraction of group w under (Benchmark) (see Equation
(4)). Recall that by Corollary 2, the ρ-Rooney rule changes Firm 1’s decision only if ρ> ρ∗.

Firms’ Optimization Problems and Equilibrium Concept. The above setup can be viewed
as a static game in which each firm simultaneously decides its interview set Af = (Af,m,Af,w) and
hiring threshold sf . For Firm 1, without the ρ-Rooney Rule, the dominant strategy is to ignore Firm
2 and solve the optimization problem (Benchmark). Thus, to characterize a Nash equilibrium of this
game, it suffices to determine the best response of Firm 2, given Firm 1’s decision. Concretely, under
(Benchmark), Firm 1’s optimal strategy (A∗

1, s
∗
1) is characterized by Proposition 1: its optimal interview

set is greedy in scores within each group, i.e., A∗
1,i = [a∗1,i,∞) where interview threshold a∗

1 = (a∗1,m, a
∗
1,w)

and hiring threshold s∗1 are jointly determined by the optimality conditions (5) and (6). For simplicity,
we interchangeably refer to Firm 1’s interview strategy as its interview threshold a∗

1. However, Firm
2’s strategy depends on the pool of candidates not hired by Firm 1. Specifically, given Firm 1’s optimal
strategy (a∗

1, s
∗
1), the fraction of candidates from group i with score a available to Firm 2 is given by:

Ψi(a | a∗
1, s

∗
1) = 1[a< a∗1,i] +1[a≥ a∗1,i]Gi(s

∗
1 | a), (13)

where 1[·] denotes the indicator function. We refer to Ψi(· | a∗
1, s

∗
1) as the availability function, which

naturally reflects Firm 2’s perceived competition for candidates. Notably, Ψi(· | a∗
1, s

∗
1) exhibits a jump

discontinuity at Firm 1’s interview threshold a= a∗1,i. Firm 2’s best response (A∗
2, s

∗
2) is then determined

by solving the following optimization program:

OPT2(a
∗
1, s

∗
1) max

A2,m,A2,w⊆R,
s2≥0

∑
i∈{m,w}

0.5

∫
A2,i

∫ ∞

s2

vgi(v | a)hi(a)Ψi(a | a∗
1, s

∗
1)dv da, (14)

s.t.
∑

i∈{m,w}

0.5

∫
A2,i

hi(a)da=C2, (15)

∑
i∈{m,w}

0.5

∫
A2,i

Ḡi(s2 | a)hi(a)Ψi(a | a∗
1, s

∗
1)da≤∆2. (16)

We refer to this optimization program as OPT2(a
∗
1, s

∗
1). The objective function (14) maximizes the

total match value of hired candidates, accounting for their availability Ψi(· | a∗
1, s

∗
1). Constraint (15)

ensures that Firm 2 adheres to its interview capacity C2, while constraint (16) limits the hiring mass,
accounting for the availability, to at most ∆2. Notably, Firm 2’s optimization problem is considerably
more challenging than Firm 1’s, due to the interplay between its endogenous hiring threshold s2—–
which depends on its interview set A2—–and the availability function Ψi(· | a∗

1, s
∗
1).

In the next subsection, we show that OPT2(a
∗
1, s

∗
1) has a unique optimal solution, implying that

the static game has a unique Nash equilibrium. A Nash equilibrium under (Intervention) is defined
analogously, with Firm 1’s unconstrained strategy (a∗

1, s
∗
1) replaced by its optimal strategy under the

ρ-Rooney rule, which is denoted by (aρ
1, s

ρ
1) and characterized in Corollary 2. Correspondingly, Firm

2’s optimal strategy in this case, denoted by (Aρ
2, s

ρ
2), solves OPT2(a

ρ
1, s

ρ
1).
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4.2. Structural Result
In this section, we characterize the unique equilibrium of the labor market introduced in Section 4.1.
As discussed earlier, under (Benchmark), it suffices to characterize Firm 2’s optimal solution that solves
OPT2(a

∗
1, s

∗
1), which we establish in the following.

Proposition 4 (Characterization of Firm 2’s Optimal Strategy). Given Firm 1’s optimal
strategy (a∗

1, s
∗
1), Firm 2’s optimal strategy (A∗

2, s
∗
2) that solves OPT2(a

∗
1, s

∗
1) uniquely exists and is

jointly determined as follows:
(a) Non-greedy Optimal Interview Set: Let F2,i(a, s

∗
2) := E[(v − s∗2)+ | a, i]Ψi(a | a∗

1, s1). Then,
Firm 2’s optimal interview set A∗

2,i for group i is a superlevel set of F2,i(a, s
∗
2), i.e.,

A∗
2,i = {a : F2,i(a, s

∗
2)≥ θ}, (17)

where level θ is chosen to satisfy the interview capacity constraint (15). Furthermore, A∗
2,i is a

union of two disjoint intervals: there exists end points (b∗2,i, c2,i, d
∗
2,i) such that −∞< b∗2,i ≤ a∗1,i ≤

c∗2,i ≤ d∗2,i <∞ and
A∗

2,i = [b∗2,i, a
∗
1,i]∪ [c∗2,i, d

∗
2,i]. (18)

(b) Greedy Optimal Hiring Threshold: The optimal hiring threshold s∗2 satisfies:

s∗2 =min
{
s2 ≥ 0 :

∑
i∈{m,w}

0.5

∫
A∗

2,i

Ḡi(s2 | a)hi(a)Ψi(a | a∗
1, s

∗
1)da≤∆

}
. (19)

Proposition 4-(a) establishes that the structure of Firm 2’s optimal interview strategy is more com-
plex than Firm 1’s. Specifically, Firm 2’s optimal interview set is a union of two intervals: a greedy
lower interval covering candidates not interviewed by Firm 1, and a non-greedy (i.e., d∗2,i is finite) upper
interval including candidates for which Firm 2 competes with Firm 1. Despite this distinct structure
of the interview set from Firm 1, part (b) shows that Firm 2’s hiring threshold is still greedy, selecting
the interviewees with the highest non-negative match values until its hiring capacity ∆2 is filled.

To understand the structure of Firm 2’s interview set, it is helpful to understand the trade-off that
Firm 2 faces when interviewing a high-score candidate. On the one hand, candidates with higher scores
tend to have high match values. On the other hand, these candidates are also more likely to be hired
by Firm 1. This trade-off naturally divides the candidate pool into two segments. Less competitive
candidates who are not interviewed by Firm 1 (a< a∗1,i) are always available to Firm 2; these candidates
correspond to the lower greedy interval of the interview set. For candidates interviewed by Firm 1
(a > a∗1,i), Firm 2 must carefully balance a candidate’s diminishing availability with their potential
for high match values. Because candidates with “exceptionally high” scores are only available to Firm
2 with vanishingly small probability, Firm 2 may not find worthwhile to use up its limited interview
slots for such hard-to-get candidates. This leads Firm 2 to adopt a strategic and non-greedy interview
strategy in the upper interval, targeting medium-score candidates who are more attainable.
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Figure 3 Illustration of Firm 2’s optimal interview set (Proposition 4), which is a superlevel set of the discounted
excess value function, F2,i(a, s

∗
2) = E

[
(v− s∗2)+ | a, i

]
Ψi(a | a∗

1, s
∗
1), with a common level θ across the two groups.

The above intuition is quantified through the discounted excess value, F2,i(a, s
∗
2) := E[(v − s∗2)+ |

a, i]Ψi(a | a∗
1, s

∗
1), which discounts each candidate’s excess value by their availability. Note that

F2,i(a, s
∗
2) depends on Firm 1’s optimal strategy (a∗

1, s
∗
1) through the availability Ψi(a | a∗

1, s
∗
1), though

we omit this dependence for brevity. Firm 2 greedily selects candidates based on their discounted
excess value within its interview capacity. That is, the optimal interview set is a superlevel set of the
discounted excess value with a common level θ across the two groups (Equation (17)). Therefore, char-
acterizing A∗

2,i boils down to understanding the behavior of the function F2,i(a, s
∗
2) for different ranges

of a. As illustrated in Figure 3, the function F2,i(a, s
∗
2) is increasing for a< a∗1,i. At a= a∗1,i, there is a

discontinuity in F2,i(a, s
∗
2) due to the sudden transition in availability. For a > a∗1,i, the shape of F2,i

becomes highly nontrivial. Higher-score candidates have higher match values, but for the same reason,
they are more likely to be hired by Firm 1. The crux of the proof for Proposition 4 is to show that
F2,i is unimodal in score a, which implies the non-greedy structure of the superlevel set of F2,i(a, s

∗).
Roughly speaking, such unimodality arises because the excess value E[(v−s∗2)+ | a, i] increases linearly
with score a, while the availability Ψ(a | a∗

1, s
∗
1) decreases exponentially under normal distributions.

We prove Proposition 4 in Appendices EC.2 and EC.4.1. In Appendix EC.2, building on the same
arguments used for Firm 1, we show that Equations (17) and (19) are necessary optimality conditions
and that a solution satisfying these equations uniquely exists. In Appendix EC.4.1, we then establish
that the discounted excess value function F2,i(a, s

∗
2) is increasing in a≤ a∗1,i and unimodal on a≥ a∗1,i,

which in turn implies the (non-greedy) structure of the interview set in Equation (18). Lastly, an
analogous characterization can be established under (Intervention) by replacing Firm 1’s strategy with
(aρ

1, s
ρ
1). Specifically, Firm 2’s optimal interviews set under (Intervention) is given by Aρ

2,i = [bρ2,i, a
ρ
1,i]∪

[cρ2,i, d
ρ
2,i] where −∞< bρ2,i ≤ aρ1,i ≤ cρ2,i ≤ dρ2,i <∞.

Remark 1 (Practical Appeal). The non-greedy structure of Firm 2’s interview strategy aligns
well with interview patterns observed in practice. In markets with simultaneous interviews, less compet-
itive firms may forgo interviewing outstanding candidates. The academic job market is a representative
example: schools conduct interviews in parallel from the same pool of candidates. In Appendix EC.6,
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we use data from the academic job market in economics (EJMR 2023) to illustrate lower-tier schools
tend to interview fewer outstanding candidates interviewed by multiple top-tier schools.

Remark 2 (Beyond Normal Distributions). The non-greedy interview also emerges under
other conditional match value distributions. Notably, in Appendix EC.5.2, we show that if conditional
match values follow a Gumbel distribution (a common noise structure in consumer choice modeling),
the lower-ranked firm’s optimal interview strategy remains non-greedy, similar to Proposition 4.

4.3. Group-level Implications of Non-universal Interview-Stage Intervention
In this section, we study the impact of Firm 1’s adoption of the ρ-Rooney Rule on group-level hiring
outcomes in the labor market. Having already analyzed the intervention’s impact on Firm 1 itself
in Section 3, we focus on its downstream impact on Firm 2. Specifically, we ask: How does Firm 2’s
optimal strategy change from (Benchmark) to (Intervention)?

To build intuition, consider the special case where Cf = ∆f . In this regime, both firms’ optimal
hiring thresholds must be zero regardless of the ρ-Rooney rule. This is because, for any interview set
with mass Cf =∆f , the mass of interviewees with non-negative match values is strictly less than ∆f .
As a result, both firms must set the lowest possible hiring threshold (i.e., zero) to satisfy the optimality
condition of the hiring threshold (Equations (6) and (19)). This implies that firm-level competition
is at its strongest for Firm 2, as most candidates interviewed by Firm 1 are unavailable to Firm 2.
This extreme scarcity makes Firm 2 pessimistic about hiring candidates from Firm 1’s interview set.
Formally, the discounted excess value F2,i(a,0) for these candidates is so small that its superlevel set,
characterizing Firm 2’s optimal interview set (see Proposition 4), excludes them entirely (see Figure 4).
(For Cf = ∆f , function F2,i(a,0) remains unimodal for a > a∗1,i. However, its maximum now occurs
before a∗1,i, and thus the function illustrated in Figure 4 is decreasing in a> a∗1,i.)

This special regime provides a clear lens to understand the downstream impact. We illustrate in
Figure 4 how Firm 2’s optimal interview set changes from (Benchmark) to (Intervention). From Propo-
sition 4, the optimal interview set in either setting is a superlevel set of the discounted excess value
function F2,i(a,0). When Firm 1 adopts the ρ-Rooney rule, its interview threshold shifts from a∗

1 to aρ
1

such that a∗1,m < aρ1,m and a∗1,w > aρ1,w (see Corollary 2). This directly affects the availability function
Ψi(a | a∗

1,0) and, consequently, the discounted excess value function F2,i(a,0).
Specifically, using categorization of Definition 1, the ρ-Rooney rule replaces borderline m candidates

in Firm 1’s interview set with borderline w candidates. From Firm 2’s perspective, this replacement
significantly increases the availability of borderline m candidates, raising their discounted excess value.
For illustration, see Figure 4 that compares the group m’s discounted excess value under (Benchmark)
(thin, light blue) and (Intervention) (thick, dark blue). Conversely, borderline w candidates are now
included in Firm 1’s interview set, thus similarly decreasing their discounted excess value for Firm 2.
See the right panel of Figure 4 that compares the group w’s discounted excess value under (Benchmark)
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Figure 4 Change in Firm 2’s interview strategy due to Firm 1’s adoption of the ρ-Rooney rule when Cf =∆f .

(thin, light orange) and (Intervention) (thick, dark red). Consequently, Firm 2 replaces all borderline
w candidates with borderline m candidates in its interview set. As a result, Firm 2 interviews (and
therefore hires) strictly fewer group w candidates. We formalize this intuition in the following.

Proposition 5 (Downstream Impact of Firm 1’s Adoption of the ρ-Rooney Rule). For
small enough Cf = ∆f , f ∈ {1,2}, Firm 1’s adoption of the ρ-Rooney rule for all ρ > ρ∗ strictly
decreases Firm 2’s hiring mass of group w. Formally, let λ∗

2,w and λρ
2,w denote Firm 2’s hiring mass

of group w under (Benchmark) and (Intervention), respectively. Then, λρ
2,w <λ

∗
2,w for any ρ> ρ∗.

We prove Proposition 5 in Appendix EC.4.2. Recall from Equation (17) that Firm 2’s optimal
interview set is the superlevel set of the function F2,i(a,0). Let θ be the corresponding level in Equation
(17). In the proof, we show that, this level θ does not change from (Benchmark) to (Intervention) under
the special regime Cf =∆f . This invariance in θ translates to the “exchange” of group w borderline
candidates with group m in Firm 2’s interview set, as in Figure 4.

Obtaining an analytical characterization of the ρ-Rooney rule’s downward impact in a more gen-
eral case (i.e., when Cf >∆f for either firm f ∈ {1,2}) is significantly more challenging due to the
endogenous nature of the optimal hiring threshold s∗2. However, our extensive numerical simulations
indicate that our insights extend beyond this special case. As an illustrative example, in Figure 5, we
present the change in the hiring fraction of group w within Firm 2, as well as in the overall market,
when moving from (Benchmark) to (Intervention) with ρ= 0.5. For this simulation, we assume that the
two firms have identical interview capacity C and hiring capacity ∆, and re-use the same parameters
used in Figure 2. By Theorem 1, the 0.5-Rooney rule has a non-zero impact only when C is sufficiently
small. The 0.5-Rooney rule then forces Firm 1 to adjust its strategy, prompting Firm 2 to optimally
respond by decreasing its hires from group w (see the left panel of Figure 5). More strikingly, this
downward impact outweighs the diversity improvement within Firm 1, leading to a net reduction in
group w’s representation in the overall market, as seen in the right panel of Figure 5. This sharply
contrasts our finding in the single-firm model: despite being well-intended to improve representation
within the top firm, the non-universal adoption of the Rooney Rule ultimately reduces the group w’s
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representation in the market due to firm-level competition. In the next subsection, we explain the
underlying mechanism behind this market-wide decline in group w’s representation.

Figure 5 Group w’s hiring fraction in Firm 2 (left panel) and in the overall market (right panel) with ρ= 0.5. Both
firms have identical capacity parameters C and ∆. We vary C and reuse the other parameters from Figure 2-(a).

4.4. Individual-level Implications of Non-universal Interview-Stage Intervention
We now turn to the individual-level implications of Firm 1’s adoption of the ρ-Rooney rule. Similar
to the single-firm model (Section 3.3), the intervention has a different impact on different groups of
candidates based on their scores. Note that a candidate’s hiring probability in the market depends on
which firm they are interviewed by. In light of this, we introduce a refined category of candidates called
superstars, whose interview spot remains the same regardless of the intervention. These are candidates
with exceptionally high scores who are interviewed exclusively by Firm 1, as Firm 2 bypasses them
due to the low probability of attaining them. We formally define superstar candidates below.

Definition 2 (Superstar Candidate). A superstar candidate from group i with score a is a
strong candidate (see Definition 1) who is interviewed exclusively by Firm 1 under both (Benchmark)
and (Intervention). Formally, a group i candidate is classified as a superstar if their score a satisfies
a≥max{d∗2,i, d

ρ
2,i} where d∗2,i =maxA∗

2,i and dρ2,i =maxAρ
2,i.

Note that the superstar candidates always exist since, from Proposition 4, max{d∗2,i, d
ρ
2,i} is finite. As

superstars are only interviewed by Firm 1, their hiring probability in the market coincides with their
hiring probability by Firm 1. Consequently, the implications of (Intervention) on the hiring probability
for superstar candidates follow naturally from the single-firm model (Proposition 3). That is, the
ρ-Rooney rule weakens candidate-level competition within Firm 1’s interview set (s∗1 ≥ sρ1), making
superstar candidates appear more competitive and increasing their hiring probabilities.

We now turn to the borderline candidates (see Definition 1). Unlike superstars, the borderline can-
didates may experience shifts in their interview spots within the market. For example, in the most
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competitive setting of Cf =∆f (as we discussed in Section 4.3), all borderline w candidates lose their

spots with Firm 2 but gain spots with Firm 1, while all borderline m candidates experience the opposite

shift. In more general regimes, we show that similar changes occur for a subset of borderline candidates.

Proposition 6 (Interview Advantage & Disadvantage for Borderline Candidates). For
small enough ∆f , f ∈ {1,2}, there exist interview capacity thresholds C̄f such that if Cf ∈ [∆f , C̄f ],
Firm 1’s adoption of the ρ-Rooney Rule for all ρ> ρ∗ results in the following:

1. Interview Advantage for Borderline w Candidates: a positive mass of borderline group w
candidates loses an interview spot from Firm 2 but gains one from Firm 1.

2. Interview Disadvantage for Borderline m Candidates: a positive mass of borderline group
m candidates loses an interview spot from Firm 1 but gains one from Firm 2.

We prove Proposition 6 in Appendix EC.4.3. At first glance, this change of interview spots may seem

beneficial for borderline group w candidates. However, this advantage in the interview stage may not

lead to a better hiring outcome because the intensity of candidate-level competition differs across firms.

Intuitively, Firm 1 may be more selective in hiring as it greedily interviews the high-score candidates,

leading to stronger candidate-level competition compared to Firm 2. In this case, borderline group w

candidates gaining an interview spot at Firm 1 may face a decrease in hiring probability due to fiercer

candidate-level competition, while borderline group m candidates gaining an interview spot at Firm 2

may see an increase due to weaker candidate-level competition.
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Figure 6 Changes in the hiring probability for borderline candidates. Both firms have identical capacity
parameters C = 0.03 and ∆=0.01. We reuse the other parameters from Figure 5.

Figure 6 confirms this intuition through simulation. Here, we use the same parameters as in Figure 5.

Focusing on C/∆=3, we plot the hiring probability of all borderline group m candidates (resp., group

w) in the left (resp., right) panel. In this simulation, all borderline group w candidates lose an interview

spot at Firm 2 and gain one at Firm 1 under (Intervention). However, they face fiercer candidate-

level competition due to Firm 1’s higher hiring threshold, sρ1 >max{s∗2, s
ρ
2} (note min{sρ1, s∗1}= sρ1 by
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Proposition 3), leading to a uniform decrease in their hiring probabilities. Conversely, borderline group
m candidates gain an interview spot at Firm 2 and experience an increase in their hiring probabilities.

We formalize these observations in the following proposition, which we prove in Appendix EC.4.4:

Proposition 7 (Individual-level Implication of Firm 1’s Adoption of the ρ-Rooney Rule).
For any ρ > ρ∗, there exist Firm 2’s interview capacity thresholds C̄2 such that if C2 ∈ [∆2, C̄2], Firm
1’s adoption of the ρ-Rooney Rule results in the following:
(a) Superstar Candidates in Both Groups Gain: The hiring probability increases for superstar

candidates in both groups (s∗1 ≥ sρ1).
(b) Some Borderline Group w Candidates Lose: For any borderline group w candidates who

lose an interview spot from Firm 2, the hiring probability decreases (sρ1 ≥ s∗2).
(c) Some Borderline Group m Candidates Gain: For any borderline group m candidates who

gain an interview spot from Firm 2, the hiring probability increases (s∗1 ≥ sρ2).

To further complement our theoretical analysis, we use simulations across a wide range of (C1,C2) to
examine the extent to which borderline candidates are impacted under the intervention. In Figure 7, we
examine two subsets of borderline candidates: Dw, the set of borderline group w candidates who lose
an interview spot at Firm 2 but gain one at Firm 1, and Dm, the set of borderline group m candidates
who lose an interview spot at Firm 1 but gain one at Firm 2. The size of each circle represents the
mass of Dw (left panel) and Dm (right panel), normalized by the mass of borderline candidates in
each group. The intensity of each circle’s color reflects the magnitude of the guaranteed change in
hiring probabilities: the maximum change for Dw and the minimum change for Dm. For example, if
the maximum change for Dw is −ϵ for ϵ > 0, then all candidates in Dw experience a decrease in hiring
probability of at least ϵ. In the left panel, red indicates a decrease in hiring probability for all candidates
in Dw, while in the right panel, blue indicates an increase for Dm. Figure 7 confirms that significant
proportion of borderline group w (resp. group m) candidates simultaneously experience shifts in the
interview spots and uniform decrease (resp. increase) in hiring probabilities.

We conclude this section with two remarks. First, note that the implications for borderline group w
candidates under the two-firm model contrast with those in the single-firm model: they uniformly ben-
efit in the single-firm model (Proposition 3), but may be harmed in the two-firm model. This “reversal”
highlights the importance of a market-wide view in studying the interview-stage interventions. From
Firm 1’s perspective, the intervention appears to favor borderline w candidates by newly offering them
interview spots. This was beneficial in the single-firm model, where they otherwise had no chance of
being hired. However, in the two-firm model, these candidates become vulnerable to Firm 2’s strategic
response: they are “competitive enough” to secure spots at Firm 2 under the benchmark but lose them
when Firm 1 begins interviewing them. As a result, the intervention simply shifts their interviews from
Firm 2 to Firm 1, where they face tougher candidate-level competition from higher-scoring candidates.
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Figure 7 Changes of the interview spots (Proposition 6) and the resulting changes in hiring probabilities
(Proposition 7) for borderline candidates from (Benchmark) to (Intervention) with ρ= 0.5. We reuse the
parameters from Figure 5 with fixed ∆=0.01, but vary (C1,C2).

Thus, while Firm 1 intended to benefit borderline w candidates, the intervention ultimately harmed
them due to Firm 2’s strategic response. Lastly, this mechanism is a key driver of the overall decrease
in group w’s hiring rate, as illustrated in Figure 5: due to stronger candidate-level competition in Firm
1, the increase in group w’s hiring rate at Firm 1 may not fully offset the decrease at Firm 2.

5. Conclusion
Motivated by the study of interview-stage interventions, such as the Rooney rule, we developed a
novel model of the labor market featuring a two-stage hiring process and pre-interview information
asymmetry across different social groups, explicitly incorporating capacity constraints for both hiring
and interviews. For a single firm, we showed that even in an idealized setting where, post-interview, no
asymmetry exists between the two groups, disparity in hiring outcomes arises due to limited interview
capacity. Our findings align with empirical evidence documenting the limited impact of these poli-
cies (Cecchi-Dimeglio 2022, Smith and Lasker 2023) and shed new light on the challenges of improving
diversity in hiring outcomes through soft affirmative actions. Another important insight is that strong
candidates from both groups emerge as beneficiaries of such interventions, as they now face weaker
candidate-level competition. In light of our results, a natural future direction is to explore alternative
diversity policies beyond interview-stage interventions and examine how their impact interacts with
realistic operational considerations such as capacity constraints.

Moving beyond the single-firm case, we investigate the impact of firm-level competition in a vertically
differentiated market where only the top firm adopts the intervention. We show that such non-universal
adoption, commonly practiced across different industries, can have adverse effects on hiring outcomes:
the policy may reduce group-level diversity at the lower-ranked firm by incentivizing it to hire fewer
targeted candidates due to increased firm-level competition. Furthermore, some candidates from the
very group the policy intends to help may ultimately be harmed, as they face fiercer candidate-level
competition at the top firm. Overall, our findings suggest that, in addition to limited interview capacity,
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firm-level competition is another key operational consideration that limits the effectiveness of interview-
stage interventions. Extending our framework to labor markets with different characteristics, such
as horizontally differentiated firms or settings with non-simultaneous hiring decisions, would be an
interesting avenue for future research.
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EC.1. Table of Notation
The following table lists major notation used throughout the main body. For a single-firm model
(Section 2), we omit the subscript f for brevity.

Table EC.1 Mathematical Notation
Symbol Meaning
Cf ∈ (0,1) interview mass of Firm f
∆f ∈ (0,1) hiring mass of Firm f
i∈ {m,w} social group
a (pre-interview) score, a∼N (0, σ2

i )
σ2
i variance of group i’s score
Hi(a) (resp., hi(a)) C.D.F. (resp., p.d.f.) of group i’s pre-interview score
Φ (resp., ϕ) C.D.F. (resp., p.d.f.) of standard Normal distribution
(x)+ max(x,0)
v match value, v | {a, i} ∼N (a, τ 2i )
τ 2i variance of group i’s conditional match value distribution
Gi(v | a) (resp., gi(v | a)) C.D.F. (resp., p.d.f.) of group i’s conditional match value

Ψi(a | a∗
1, s

∗
1)

Availability of group i candidates with score a to Firm 2,
given Firm 1’s optimal strategy (a∗

1, s
∗
1) (see Equation (13))

Af = (Af,m,Af,w) Firm f ’s interview set for each group i∈ {m,w}
sf Firm f ’s hiring threshold
(A∗

f , s
∗
f ) Firm f ’s equilibrium strategy under (Benchmark)

ρ
minimum fraction of group w in the interview set required
by the ρ-Rooney rule (see (ρ-Rooney rule))

(Aρ
f , s

ρ
f ) Firm f ’s equilibrium strategy under Firm 1’s adoption of the ρ-Rooney rule

a∗1,i (resp., aρ1,i)
Firm 1’s optimal interview threshold under (Benchmark) (resp., the ρ-Rooney
rule) — see Proposition 1 and Corollary 2

ρ∗ Firm 1’s interview fraction of group i under (Benchmark) (Equation (4))

(b∗2,i, c
∗
2,i, d

∗
2,i)

end points of Firm 2’s interview set A∗
2,i for group i under (Benchmark)

(i.e., A∗
2,i = [b∗2,i, a

∗
1,i]∪ [c∗2,i, d

∗
2,i]; see Proposition 4)

(bρ2,i, c
ρ
2,i, d

ρ
2,i) end points of Aρ

2,i

λ∗
2,w (resp., λρ

2,w) Firm 2’s hiring mass of group w under (Benchmark) (resp., the ρ-Rooney rule)

EC.2. Meta-Characterization of Equilibrium Structure
In this appendix, we present meta-applicable structural results for the following general model. We
will frequently use this meta-characterization to derive the structural results for the single-firm model
(Proposition 1; Appendix EC.3.2) and the two-firm model (Proposition 4; Appendix EC.4.1), as well
as additional structural results beyond our context (Appendices EC.5.1 and EC.5.2).

Specifically, consider the following optimization problem (OPT-Meta):

(OPT-Meta) max
Bm,Bw⊆R

s≥0

∑
i∈{m,w}

0.5

∫
Bi

∫ ∞

s

vgi(v | a)hi(a)Ψi(a)dv da (EC.1)

s.t.
∑

i∈{m,w}

0.5

∫
Bi

hi(a)da=C (EC.2)

∑
i∈{m,w}

0.5

∫
Bi

∫ ∞

s

gi(v | a)hi(a)Ψi(a)dv da≤∆ (EC.3)
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To see the connection between (OPT-Meta) and our models, note that setting Ψi(a) = 1 reduces

(OPT-Meta) to the single-firm model (i.e., (Benchmark); see Section 2). Similarly, with a slight abuse

of notation, setting Ψi(a) = Ψi(a | a∗
1, s

∗
1) (see Equation (13)) reduces (OPT-Meta) to Firm 2’s best

response (i.e., OPT2(a
∗
1, s

∗
1); see Section 4.1). Note that imposing a non-negativity condition s≥ 0 is

without loss of optimality, as hiring candidates with negative match values is always suboptimal.

In what follows, we characterize the optimal solution of (OPT-Meta) under Assumption EC.1. Thus,

when applying the meta results to derive the structural results of our main models (Appendices EC.3.2

and EC.4.1), much of our proof will focus on verifying that each firm’s optimization problem satisfies

Assumption EC.1.

Assumption EC.1. The functions gi, hi, and Ψi in (OPT-Meta) satisfy the following:

(i) Functions gi and hi are twice-differentiable and strictly positive density functions

(ii) Function Ψi is strictly positive and twice differentiable except for at most one point of jump

discontinuity di (we set di =∞ if such discontinuity point does not exist)

(iii) For each group i∈ {m,w} and s≥ 0, function Fi(a, s) :=E[(v− s)+ | a, i]Ψi(a) is increasing in a

for a< di and has at most one mode for a> di.

The following propositions establish the optimality conditions and uniqueness of the solution to

(OPT-Meta) under Assumption EC.1.

Proposition EC.1 (Optimality Condition). Under Assumption EC.1, any optimal solution

B∗ = (B∗
m,B

∗
w) and s∗ of (OPT-Meta) must satisfy the following:

(i) The optimal interview set must be greedy with respect to Fi(a, s
∗) =E[(v− s∗)+ | a, i]Ψi(a), with a

common level θ across both groups:

B∗
i = {a : Fi(a, s

∗)≥ θ}, ∀i∈ {m,w}. (EC.4)

where θ is uniquely identified to satisfy the interview capacity constraint (EC.2). Furthermore, B∗
i

must be a union of at most two disjoint intervals such that B∗
i = [b∗1,i, di]∪ [b∗2,i, b

∗
3,i] for some end

points b∗1,i ≤ di ≤ b∗2,i ≤ b∗3,i.

(ii) The optimal hiring threshold s∗ must satisfy:

s∗ =min{s≥ 0 :
∑

i∈{m,w}

0.5

∫
B∗

i

∫ ∞

s

gi(v | a)hi(a)Ψi(a)dv da≤∆}. (EC.5)

Proposition EC.2 (Uniqueness of Optimal Strategy). Under Assumption EC.1, the optimal

solution (B∗, s∗) of (OPT-Meta) uniquely exists.12

12 By uniqueness of the interview set, we mean uniqueness up to a zero-measure set.
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The proofs of Propositions EC.1 and EC.2 are presented in Appendices EC.2.1 and EC.2.2, respec-
tively. A few remarks are in order. First, note that the discontinuity point di of the function Ψi(a)

(Assumption EC.1–(ii)) does not depend on s∗. Second, the fact that B∗
i consists of at most two disjoint

intervals—one below di and one above di (Proposition EC.1-(i))—follows directly from the superlevel
set representation in (EC.4) and the structural properties of Fi imposed by Assumption EC.1-(iii).
Lastly, we emphasize that the endpoints {b1,i, b2,i, b3,i} need not be distinct or finite; their values
depend on the shape of Fi. For example, if Fi(a, s) is continuously increasing in a for all s (so that
di =∞, per Assumption EC.1-(ii)), then B∗

i is a single greedy interval. In this case, the representation
in (EC.4) simplifies to a form where b1,i is finite while the other endpoints, b2,i and b3,i, are infinite.
Thus, in applying this meta-result to our main models (Appendicies EC.3.2 and EC.4.1), we leverage
the specific shape of Fi (which depends on the firm’s optimization problem) to further refine the values
of these endpoints—that is, determining whether some collapse or become infinite.

Remark EC.1 (Beyond Normal Distributions). As we highlighted earlier and will show in
Appendices EC.3.2 and EC.4.1, the normal distributions used in our model naturally satisfy Assump-
tion EC.1. In particular, we show that for Firm 2, the function Fi(a, s) is unimodal in a for any s,
inducing a non-greedy structure in the upper interval of the interview set (Proposition 4).

However, our structural results extend beyond normal distributions. As illustrative examples, we
apply our meta-results to two different models beyond our normal distribution framework. First, in
Appendix EC.5.1, we recover the structural results of Vohra and Yoder (2023), where the upper interval
of Firm 2’s interview set is greedy under certain families of conditional match value distributions (such
as the exponential distribution). In contrast, in Appendix EC.5.2, we apply the meta-results to the
Gumbel distribution (for conditional match value distributions), a workhorse model in the consumer
choice framework. We show that the Gumbel distribution results in the unimodal structure of the
function Fi(a, s), which consequently leads to the non-greedy structure of Firm 2’s interview set, similar
to our model with normal distributions.

EC.2.1. Proof of Proposition EC.1
The optimality condition (EC.5) is straightforward because decreasing hiring threshold s can only
increase objective value and hiring mass. As such, for any given interview set B, the firm must set as
low hiring threshold as possible subject to the hiring capacity constraint (EC.3).

We now prove the first optimality condition (EC.4). Let (B∗, s∗) denote a pair of the optimal
interview set B∗ = (B∗

m,B
∗
w) and hiring threshold s∗. We assume to the contrary. Suppose the optimal

interview set B∗ is not greedy with respect to Fi(a, s
∗) — that is, it does not satisfy Equation (EC.4).

We will show that we can construct another solution (B̃, s̃) that it is feasible — i.e., the resulting
interview mass is C, the hiring mass is as most ∆, and s̃≥ 0 — but achieves a strictly higher objective
value compared to the original solution (B∗, s∗), which would be a contradiction. In the following, for
brevity, we often refer to candidate from group i with score a as candidate (a, i).
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We first make the following observation. If B∗ = (B∗
m,B

∗
w) is not greedy with respect to Fi(·, s∗),

it must skip some of the group i candidates with “higher” values of Fi(·, s∗) but interview group j

candidates (note that not necessarily j ̸= i) with “lower” values of Fj(·, s∗). Formally, there exist θ≥ 0

and i, j ∈ {m,w} such that set B∗
i excludes some candidates (a, i) with Fi(a, s

∗)≥ θ, but set B∗
j includes

some of the candidates (a, j) with Fj(a, s
∗)< θ. Because of Assumption EC.1-(iii), the superlevel and

sublevel set of Fi(·, s∗) must be a union of disjoint intervals. Hence, the earlier observation implies
that, there exist open intervals Xi := (ai, bi) (for group i) and Yj := (aj, bj) (for group j) such that13

B∗
i ∩ (ai, bi) = ∅ (EC.6)

(aj, bj)⊆B∗
j (EC.7)

inf
a∈(ai,bi)

Fi(a, s
∗)≥ θ > sup

a∈(aj ,bj)

Fj(a, s
∗) (EC.8)

Equation (EC.6) indicates that group i candidates with scores a∈ (ai, bi) are not interviewed. Line
(EC.7) indicates that group j candidates with scores in a∈ (aj, bj) are interviewed. Finally, the inequal-
ity (EC.8) means that all candidates in (ai, bi) have higher values of Fi than those of Fj in (aj, bj).

We claim that by infinitesimally moving mass from Yj to Xi, and potentially changing hiring thresh-
old s∗ properly, we can construct a feasible pair of interview set and hiring threshold that achieves
higher objective than the original optimal solution (B∗, s∗). Without loss of generality, we assume
i ̸= j (the same argument follows even when i = j). Define the following new interview set B̃(ϵ) =

(B̃m(ϵ), B̃w(ϵ)) as follows:

B̃i(ϵ) =B∗
i ∪ [ai, ai + ϵ]

B̃j(ϵ) =B∗
j \ [aj, aj(ϵ)]

(EC.9)

for infinitesimally small ϵ > 0. Here, with a slight abuse of notation, we implicitly define aj(ϵ) such
that [ai, ai + ϵ] and [aj, aj(ϵ)] have the same mass:∫ ai+ϵ

ai

hi(a)da=

∫ aj(ϵ)

aj

hj(a)da, (EC.10)

for all ϵ≥ 0. Equivalently, we must have

hi(ai + ϵ) = hj(aj(ϵ)) ·
daj(ϵ)

dϵ
(EC.11)

with aj(0) = aj by definition. Hence, by construction, the interview set B̃(ϵ) has the same interview
mass as B∗.

13 In our proof, we implicitly assumed that it is possible to select an interval from any given set with positive probability
measure. Although there exist pathological sets with positive measure that may not contain any intervals, such as the
fat Cantor set (see, for example, Aliprantis and Burkinshaw (1998)), these sets can be approximated arbitrarily closely
by countable unions of open intervals due to the outer regularity of probability measures (see, for example, Theorem
12.3 in Billingsley (1995)). Therefore, we can extend our argument to accommodate these corner cases.
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Denote the objective value and hiring mass of any feasible solution (B,s) as follows:

V (B,s) =
∑

i∈{m,w}

0.5

∫
Bi

∫ ∞

s

vgi(v | a)hi(a)Ψi(a)dv da, (EC.12)

λ(B,s) =
∑

i∈{m,w}

0.5

∫
Bi

∫ ∞

s

gi(v | a)hi(a)Ψi(a)dv da. (EC.13)

Because B̃(ϵ) is parameterized by scalar ϵ > 0, it is further convenient to define:

Ṽ (ϵ, s) := V (B̃(ϵ), s), (EC.14)

λ̃(ϵ, s) := λ(B̃(ϵ), s) (EC.15)

Note that Ṽ (0, s∗) = V (B∗, s∗) and λ̃(0, s∗) = λ(B∗, s∗) are the objective value and hiring mass achieved
by the original optimal solution (B∗, s∗), respectively.

Given the above notation, we now construct another hiring threshold s̃(ϵ)≥ 0 such that (B̃(ϵ), s̃(ϵ))

is feasible but achieves a higher objective than (B∗, s∗) for sufficiently small ϵ. To that end, we first
observe that, due to Assumption EC.1-(i) and (ii), the second-order partial derivative of Ṽ and λ̃

exists. In particular,
∂λ̃(ϵ, s∗)

∂ϵ

∣∣∣
ϵ=0

(EC.16)

is the rate of increases of hiring mass when we change only the interview set from B∗ to B(ϵ) with
sufficiently small ϵ > 0, while keeping the hiring threshold s∗ fixed. With this observation in place, in
order to find a new hiring threshold s̃(ϵ), we now consider two cases:

Case 1: s∗ = 0 and ∂λ̃(ϵ,0)

∂ϵ

∣∣∣
ϵ=0

< 0.

In this case, the original hiring threshold is at the lowest value (s∗ = 0), and infinitesimally moving

mass from Yj to Xi can only decrease a total hiring mass (∂λ̃(ϵ,0)
∂ϵ

∣∣∣
ϵ=0

< 0.). Based on this observation,
we set s̃(ϵ) = s∗ = 0 (i.e., we use the same hiring threshold). Then, for small enough ϵ, we have
λ(B̃(ϵ),0) = λ̃(ϵ,0) ≤ λ̃(0,0) = λ(B∗,0) where the inequality holds because λ̃(ϵ,s∗)

∂ϵ

∣∣∣
ϵ=0

< 0. Hence,
(B̃(ϵ),0) is a feasible pair of interview set and hiring threshold (in the sense that it respects the
interview capacity and hiring capacity constraints).

We now investigate whether the objective increases as we switch from (B∗,0) to (B̃(ϵ),0). By Taylor’s
theorem—which can be applied due to Assumption EC.1- (i) and (ii)—we have:14

Ṽ (ϵ,0)− Ṽ (0,0) = ϵ ·

(
∂Ṽ (ϵ,0)

∂ϵ

∣∣∣
ϵ=0

)
+ o(ϵ) = 0.5ϵhi(ai)[Fi(ai,0)−Fj(aj,0)]+ o(ϵ). (EC.17)

We obtained the last equality in (EC.17) as follows. Observe that, by writing v = (v − s) + s, we
have:

Ṽ (ϵ, s) = s · λ̃(ϵ, s)+
∑

i∈{m,w}

0.5

∫
B̃i(ϵ)

Fi(a, s)hi(a).da (EC.18)

14 For functions f, g :R→R, we write f(x) = o (g(x)) if f(x)
g(x)

→ 0 as x→∞.
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Hence, taking partial derivative of the above equation with respect to ϵ, we obtain:

∂Ṽ (ϵ, s∗)

∂ϵ
=
∂

∂ϵ

s∗ · λ̃(ϵ, s∗)+ ∑
i∈{m,w}

0.5

∫
B̃i(ϵ)

Fi(a, s
∗)hi(a)da

 (EC.19)

= s∗ · ∂λ̃(ϵ, s
∗)

∂ϵ
+0.5 · ∂

∂ϵ

(∫ ai+ϵ

ai

Fi(a, s
∗)hi(a)da−

∫ aj(ϵ)

aj

Fj(a, s
∗)hj(a)da

)
(EC.20)

= s∗ · ∂λ̃(ϵ, s
∗)

∂ϵ
+0.5 ·hi(ai + ϵ) · [Fi(ai + ϵ, s∗)−Fj(aj(ϵ), s

∗)]. (EC.21)

The second line is due to the definition of B̃(ϵ) in equation (EC.9). The last line follows from equation
(EC.11). Hence, the last equation in (EC.17) follows from evaluating (EC.21) at ϵ= 0 and s∗ = 0 (recall
that aj(0) = aj by construction). However, by the construction of ai and aj (see inequality (EC.8))
and given s∗ = 0, we must have Fi(ai,0) > Fj(aj,0). Thus, for small enough ϵ > 0, we must have
Ṽ (ϵ,0)− Ṽ (0,0) > 0. In other words, (B̃(ϵ),0) is feasible and has higher objective than the original
optimal solution (B∗,0), a contradiction.

Case 2: s∗ > 0 or ∂λ̃(ϵ, s
∗)

∂ϵ

∣∣∣
ϵ=0

≥ 0.
In this case, changing the interview set from B∗ to B̃(ϵ) without adjusting the hiring threshold may

increase the total hiring mass. Thus, for a given ϵ > 0, we set the hiring threshold as s̃(ϵ), which is
defined as the solution to the following equation (with respect to s and parameterized by ϵ):

λ̃(ϵ, s) = λ(0, s∗). (EC.22)

That is, we set s̃(ϵ) such that the hiring mass of (B̃(ϵ), s̃(ϵ)) is equal to that of the original solution
(B∗, s∗). Note that s̃(0) = s∗ by construction. By the implicit function theorem, which can be applied
due to Assumption EC.1-(i) and (ii), we have:

ds̃(ϵ)

dϵ

∣∣∣
ϵ=0

=−

∂λ̃(ϵ, s∗)

∂ϵ

∣∣∣
ϵ=0

∂λ̃(0, s)

∂s

∣∣∣
s=s∗

. (EC.23)

Note that the denominator is strictly negative (because all g,h,Ψ are strictly positive by Assump-
tion EC.1). Thus, the derivative ds̃(ϵ)

dϵ

∣∣∣
ϵ=0

is well-defined.
We first show that, for small enough ϵ > 0, (B̃(ϵ), s̃(ϵ)) is a feasible pair of interview set and hiring

threshold. Note that, by construction, the pair satisfies the capacity constraints (EC.2) and (EC.3).
Thus, it only remains to show that s̃(ϵ)≥ 0. If s∗ > 0, the claim is straightforward because s̃(0) = s∗ > 0

and s̃(ϵ) is differentiable near ϵ= 0 (by the above implicit differentiation). Otherwise, by the hypothesis
of case 2, we must have ∂λ̃(ϵ,s∗)

∂ϵ

∣∣∣
ϵ=0

≥ 0, which implies ds̃(ϵ)

dϵ

∣∣∣
ϵ=0

≥ 0 because numerator in Equation
(EC.23) is nonnegative and the denominator in Equation (EC.23) is strictly negative. Combining, for
sufficiently small ϵ > 0, we have s̃(ϵ)≥ s∗ ≥ 0, as desired.
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Having established feasibility of (B̃(ϵ), s̃(ϵ)), we now investigate whether the objective increases as
we switch from (B∗, s∗) to (B̃(ϵ), s̃(ϵ)). By Taylor’s theorem, the change of the objective is given by:

Ṽ (ϵ, s̃(ϵ))− Ṽ (0, s∗) = Ṽ (ϵ, s̃(ϵ))− Ṽ (0, s̃(0)) (s̃(0) = s∗ by definition) (EC.24)

= ϵ · dṼ (ϵ, s̃(ϵ))

dϵ

∣∣∣
ϵ=0

+ o(ϵ). (EC.25)

To show that Ṽ (ϵ, s̃(ϵ))− Ṽ (0, s∗)> 0 for small enough ϵ > 0, it suffices to show that the derivative
dṼ (ϵ,s̃(ϵ))

dϵ

∣∣∣
ϵ=0

is strictly positive. Given s̃(0) = s∗ and using the clain rule, we have:

dṼ (ϵ, s̃(ϵ))

dϵ

∣∣∣
ϵ=0

=
∂Ṽ (ϵ, s∗)

∂ϵ

∣∣∣
ϵ=0

+
∂Ṽ (0, s)

∂s

∣∣∣
s=s∗

· ds̃(ϵ)
dϵ

∣∣∣
ϵ=0
. (EC.26)

We compute each partial derivative as follows. Using Equation (EC.21), we have

∂Ṽ (ϵ, s∗)

∂ϵ

∣∣∣
ϵ=0

= s∗ · ∂λ̃(ϵ, s
∗)

∂ϵ

∣∣∣
ϵ=0

+0.5hi(ai)(Fi(ai, s
∗)−Fj(aj, s

∗)). (EC.27)

In addition, by taking the partial derivative of line (EC.18) with respect to s, we obtain:

∂Ṽ (0, s)

∂s

∣∣∣
s=s∗

= λ̃(0, s∗)+ s∗ · ∂λ̃(0, s)
∂s

∣∣∣
s=s∗

+
∑

i∈{m,w}

0.5

∫
B∗

i

(
∂Fi(a, s)

∂s

∣∣∣
s=s∗

)
hi(a)da (EC.28)

= s∗ · ∂λ̃(0, s)
∂s

∣∣∣
s=s∗

, (EC.29)

where the line (EC.29) follows from the fact that

∂Fi(a, s)

∂s
=−Ḡi(s|a)Ψi(a) (EC.30)

and therefore ∑
i∈{m,w}

0.5

∫
B∗

i

(
∂Fi(a, s)

∂s

∣∣∣
s=s∗

)
hi(a)da=−λ̃(0, s∗). (EC.31)

Substituting (EC.27) and (EC.29) into (EC.26), we obtain

dṼ (ϵ, s̃(ϵ))

dϵ

∣∣∣
ϵ=0

= s∗ ·

(
∂λ̃(ϵ, s∗)

∂ϵ

∣∣∣
ϵ=0

+
∂λ̃(0, s)

∂s

∣∣∣
s=s∗

· ∂s̃(ϵ)
dϵ

∣∣∣
ϵ=0

)
+0.5hi(ai)(Fi(ai, s

∗)−Fj(aj, s
∗))

(EC.32)
= 0.5hi(ai)(Fi(ai, s

∗)−Fj(aj, s
∗)), (EC.33)

where the last line follows from equation (EC.23).
Substituting (EC.33) into (EC.25), we deduce that, for small enough ϵ > 0,

Ṽ (ϵ, s̃(ϵ))− Ṽ (0, s∗) = 0.5ϵhi(ai)(Fi(ai, s
∗)−Fj(aj, s

∗))+ o(ϵ)> 0, (EC.34)

where the last inequality is because, by construction of of (ai, aj) (see inequality (EC.8)), we must have
Fi(ai, s

∗)>Fj(aj, s
∗). Hence, for sufficiently small ϵ > 0, the objective value of (B̃(ϵ), s̃(ϵ)) is strictly

higher than that of (B∗, s∗), which is a contradiction.
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Thus, we have shown that the optimal interview set B∗ and hiring threshold s∗ must satisfy

B∗
i = {a : Fi(a, s

∗)≥ θ}, ∀i∈ {m,w}. (EC.35)

Finally, due to Assumption EC.1-(ii) and (iii), a superlevel set of Fi(a, s
∗) (in a) must be a union of at

most two intervals: one below and the other above the discontinuity point di of Fi(a, s
∗). Furthermore,

because Fi(a, s) is increasing for a < di, the lower interval must be of the form [b1,i, di]. Thus, we
conclude that B∗

i = [b∗1,i, di]∪ [b∗2,i, b
∗
3,i], with b∗1,i ≤ di ≤ b∗2,i ≤ b∗3,i. This completes the proof.

EC.2.2. Proof of Proposition EC.2
We prove that the optimality conditions in in Proposition EC.1 (i.e. equations (EC.4) and (EC.5))
uniquely exists. We proceed in two steps. In Step 1, we express the optimality conditions in Proposi-
tion EC.1 as a univariate fixed point equation with respect to a hiring threshold. In Step 2, we show
that the fixed point of such equation uniquely exists.

Step 1. Express optimality conditions in Proposition EC.1 as a fixed-point equation. We
first provide Definitions EC.1 and EC.2 to simplify the notation of optimality conditions (EC.1) and
(EC.5), respectively.

Definition EC.1. For any given s∈R, define B(s) = (Bm(s),Bw(s)) as

Bi(s) = {a∈R : Fi(a, s)≥ θ(s)}, (EC.36)

where level θ(s) is uniquely identified by the interview capacity constraints. That is, θ(s) is the unique
solution of the following equation:

∑
i∈{m,w}

0.5

∫
{a:Fi(a,s)≥θ(s)}

hi(a)da=C. (EC.37)

For any s≥ 0 and C ∈ (0,1), set Bi(s) always uniquely exists. This is because because hi(a) is a strictly
positive and continuous density function and the level θ(s) is strictly decreases in C. Furthermore, the
end points of B(s) are continuous in s due to Assumption EC.1-(i) and (ii).

Definition EC.2. For a given pair of (s, s̃), we define λ(B(s), s̃) as the hiring mass achieved by
interview set B(s) given by Definition EC.1 and hiring threshold s̃:

λ(B(s), s̃) =
∑

i∈{m,w}

0.5

∫
Bi(s)

∫ ∞

s̃

gi(v|a)hi(a)Ψi(a)dv da. (EC.38)

Using Definitions EC.1 and EC.2, we re-write optimality conditions (EC.4) and (EC.5) in Proposi-
tion EC.1 as:

s∗ =min{s̃≥ 0 : λ(B(s∗), s̃)≤∆}. (EC.39)
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Note that for any fixed s, function λ(B(s), s̃) is strictly decreasing in s̃. Hence, its inverse λ−1(B(s), ·)

is well-defined and must satisfy:

λ(B(s), s̃)≤∆⇐⇒ λ−1(B(s),∆)≤ s̃. (EC.40)

Combining (EC.39) and (EC.40), we have s∗ =min{s̃≥ 0 : λ−1(B(s∗),∆)≤ s̃}, which implies:

s∗ =max{0, λ−1(B(s∗),∆)} . (EC.41)

Step 2. Show that the solution of equation (EC.41) uniquely exists. Because B(s) is uniquely
pinned down for any given s, it is sufficient to demonstrate that a unique s∗ satisfy Equation (EC.41).
We establish this uniqueness through the following lemma.

Lemma EC.1. Function λ(B(s), s) strictly decreases in s∈R.

Before proving the proof of Lemma EC.1, we first show that Lemma EC.1 implies the existence and
uniqueness of a fixed point for equation (EC.41). We first address uniqueness. Assume to the contrary
that there exists s∗ and ŝ satisfying Equation (EC.41) such that s∗ < ŝ. By Lemma EC.1, we have
λ(B(s∗), s∗)>λ(B(ŝ), ŝ). We now consider two cases. First, if s∗ > 0, then ŝ > 0 as well. Consequently,

s∗ = λ−1(B(s∗),∆)⇐⇒ λ(B(s∗), s∗) =∆ (EC.42)

ŝ= λ−1(B(ŝ),∆)⇐⇒ λ(B(ŝ), ŝ) =∆, (EC.43)

Thus, we deduce that λ(B(s∗), s∗) = λ(B(ŝ), ŝ), a contradiction to λ(B(s∗), s∗)>λ(B(ŝ), ŝ). If s∗ = 0,
using Equation (EC.41), we have λ−1(B(0),∆) ≤ 0, or equivalently λ(B(0),0) ≤ ∆ from (EC.40).
However, we have assumed ŝ > s∗ = 0, and hence (EC.43) holds such that λ(B(0),0)≤∆= λ(B(ŝ), ŝ),
which again contradicts Lemma EC.1.

We next address existence. Note that lims→−∞ λ(B(s), s) = C ≥ ∆ and lims→∞ λ(B(s), s) = 0 <

∆. Moreover, the end points of Bi(s) are continuous in s, and therefore λ(B(s), s) is continuous in
s. Thus, by intermediate value theorem, there exists s′ ∈ R such that λ(B(s′), s′) = ∆. If s′ ≥ 0,
then λ−1(B(s′),∆) = s′ ≥ 0 and therefore s′ satisfies (EC.41). If s′ < 0, Lemma EC.1 implies that
λ(B(0),0)<∆. Consequently, we have λ−1(B(0),∆)< 0, which implies that s= 0 satisfies (EC.41).

Proof of Lemma EC.1. To facilitate subsequent proofs, we begin by expressing the superlevel
set Bi(s) as a union of disjoint intervals. Recall from Assumption EC.1-(ii) that the function Ψi(a)

is discontinuous at most at one point, denoted by di (with di =∞ if no such point exists). Note that
di does not depend on s. Furthermore, from Assumption EC.1-(iii), for any s ≥ 0, function Fi(a, s)

increases for a< di and has at most one mode at a> di. Thus, we can express the set Bi(s) as

Bi(s) = [b1,i, di]∪ [b2,i, b3,i], (EC.44)
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for some b1,i ≤ di ≤ b2,i ≤ b3,i. Note that the endpoints {b1,i, b2,i, b3,i} are a function of s. Specifically, if
endpoint bk,i (k ∈ {1,2,3}) is finite, it is determined by solving the equation

Fi(bk,i, s) = θ. (EC.45)

In what follows, we focus on this case where all endpoints are finite and distinct. Cases with coinciding
or infinite endpoints can be addressed by excluding degenerate intervals or considering only finite
endpoints, without affecting the overall proof.15

When all endpoints are distinct and finite (b1,i <di < b2,i < b3,i <∞), the implicit function theorem,
which is applicable due Assumption EC.1-(i) and (ii), ensures that the derivatives dbi,k

ds
are well-defined

for k ∈ {1,2,3}. Thus, using the chain rule, the derivative of λ(B(s), s) is given by:

dλ(B(s), s)

ds

=
d

ds

∑
i∈{m,w}

0.5

∫
Bi(s)

∫ ∞

s

gi(v | a)hi(a)Ψi(a)dv da

=
d

ds

∑
i∈{m,w}

0.5

[∫ di

b1,i

∫ ∞

s

gi(v | a)hi(a)Ψi(a)dv da+

∫ b3,i

b2,i

∫ ∞

s

gi(v | a)hi(a)Ψi(a)dv da

]

=−0.5
∑

i∈{m,w}

[∫ di

b1,i

gi(s | a)hi(a)Ψi(a)da+

∫ b3,i

b2,i

gi(s | a)hi(a)Ψi(a)dv da

]
︸ ︷︷ ︸

(A)>0

+

0.5
∑

i∈{m,w}

[
−Ḡi(s | b1,i)hi(b1,i)Ψi(b1,i)

db1,i
ds

− Ḡi(s | b2,i)hi(b2,i)Ψi(b2,i)
db2,i
ds

+ Ḡi(s | b3,i)hi(b3,i)Ψi(b3,i)
db3,i
ds

]
︸ ︷︷ ︸

(B)

From the last line, because term (A)> 0, it suffices to prove that term (B)≤ 0. To simplify term (B),
we first define the following notation. We use [n] to denote set {1,2, ..., n} for positive integer n. Let
E := {bk,i : k ∈ [3], i ∈ {m,w}} denote the set of end points. For each b ∈ E , we use i(b) to denote the
group i ∈ {m,w} such that b ∈Bi(s). Then, the partial derivative of function Fi(b)(b, s) = E[(v− s)+ |

b, i= i(b)] with respect to s is given by:

∂Fi(b)(b, s)

∂s
=−Ḡi(b)(s | b)Ψi(b)(b)< 0. (EC.46)

We next order and re-label the endpoints b∈ E based on the values of
∣∣∣∂Fi(b)(b,s)

∂s

∣∣∣= Ḡi(b)(s | b)Ψi(b)(b).
Specifically, let mj (for j ∈ [6]) denote the endpoint b ∈ E with the j-th largest value of Ḡi(b)(s |

b)Ψi(b)(b). In other words, for all mj ∈ E , j ∈ [6], we have:

Ḡi(m1)(s |m1)Ψi(m1)(m1)≥ Ḡi(m2)(s |m2)Ψi(m2)(m2)≥ ...≥ Ḡi(m6)(s |m6)Ψi(m6)(m6), (EC.47)

15 We remind that not all endpoints are required to be finite. For example, if Fi(a, s) is continuous and strictly increasing
for all a∈R, which is Firm 1’s case (see Appendix EC.3.2), its superlevel set Bi(s) simplifies to [b1,i,∞), corresponding
to setting di =∞.
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or equivalently,
∂Fi(m1)(m1, s)

∂s
≤
∂Fi(m2)(m2, s)

∂s
≤ ...≤

∂Fi(m6)(m6, s)

∂s
≤ 0. (EC.48)

We next define ϵj as the change of mass at the end point mj as we infinitesimally increase s:

ϵj := hi(mj)(mj) ·
(
dmj

ds

)
· (−1)1[mj∈L], (EC.49)

where we use L to denote a set of lower end points, i.e., L= {(b1,i, b2,i) : i∈ {m,w}}. Note that, because
B(s) have the identical mass C for all s (Definition EC.1), we must have:

6∑
j=1

ϵj = 0. (EC.50)

With this notation, we can express term (B) as follows:

(B)=
6∑

j=1

∣∣∣∣∂Fi(mj)(mj, s)

∂s

∣∣∣∣ · ϵj. (EC.51)

To prove (B) ≤ 0, we establish a “cut-off” structure on the sign of ϵj through the following claim,
which we prove at the end of this section.

Claim EC.1 (Sign Cutoff of of ϵj). There exists l ∈ [6] such that ϵj ≤ 0 if and only if j ≤ l.

Note that Claim EC.1 directly implies (B)≤ 0:

(B)=
l∑

j=1

∣∣∣∣∂Fi(mj)(mj, s)

∂s

∣∣∣∣ ϵj + 6∑
j=l+1

∣∣∣∣∂Fi(mj)(mj, s)

∂s

∣∣∣∣ ϵj (EC.52)

≤
l∑

j=1

∣∣∣∣∂Fi(ml)(ml, s)

∂s

∣∣∣∣ ϵj + 6∑
j=l+1

∣∣∣∣∂Fi(ml)(ml, s)

∂s

∣∣∣∣ ϵj (EC.53)

= 0, (EC.54)

where (EC.53) follows from Claim EC.1, along with the definition of mj ’s (inequality (EC.47)), and
(EC.54) follows from (EC.50).

Proof of Claim EC.1. We recall from equation (EC.45) that, for a given s, the end point mj is
defined through the following equation

Fi(mj)(mj, s) = θ, ∀j ∈ [6]. (EC.55)

By differentiating with respect to s, we have:

dmj

ds
=

∂θ

∂s
−
∂Fi(mj)(mj, s)

∂s
∂Fi(mj)(mj, s)

∂mj

. (EC.56)

Moreover, because Bi(s) is a superlevel set of Fi(·, s), the lower and upper endpoints of Bi(s) are
located in the increasing and decreasing segments of Fi(·, s), respectively. In other words,
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∂Fi(mj)(mj, s)

∂mj

> 0⇔mj ∈L, (EC.57)

where we recall that L= {(b1,i, b2,i) : i∈ {m,w}}. Combining (EC.49), (EC.56), and (EC.57), we deduce

that

sign(ϵj) = sign


∂θ

∂s
−
∂Fi(mj)(mj, s)

∂s
∂Fi(mj)(mj, s)

∂mj

· (−1)1[mj∈L]

= sign
(
∂Fi(mj)(mj, s)

∂s
− ∂θ

∂s

)
. (EC.58)

Inequality (EC.48) implies that, if ∂θ
∂s

≥ ∂Fi(m6)
(m6,s)

∂s
(resp. ∂θ

∂s
≤ ∂Fi(m1)

(m1,s)

∂s
), then ϵj < 0 (resp.,

ϵj < 0) for all j ∈ [6], which is a contradiction to the equation (EC.50). Hence, there must exist l ∈ [6]

such that

∂Fi(m1)(m1, s)

∂s
≤ ...≤

∂Fi(ml)(ml, s)

∂s
≤ ∂θ

∂s
≤
∂Fi(ml+1)(ml+1, s)

∂s
≤ ...≤

∂Fi(m6)(m6, s)

∂s
. (EC.59)

Combining (EC.59) and (EC.58), we conclude that there exists l ∈ [6] such that ϵj ≤ 0 if and only if

j ≤ l. □

EC.3. Proofs Related to Section 3
EC.3.1. Preliminary Notions and Auxiliary Results
In the following, we prove some useful properties of the (optimal) hiring threshold endogenously given

by an interview threshold (Definition EC.6).

Claim EC.2 (Properties of Optimal Hiring Threshold). For any given a= (am, aw), define
a function s(a) as

s(a) :=min
{
s≥ 0 :

∑
i∈{m,w}

0.5

∫ ∞

ai

∫ ∞

s

gi(v | a)hi(a)dv da≤∆
}

(EC.60)

Then, s(a) satisfy the following properties:
(i) s(a) =max(ŝ(a),0) for all a ∈R2 where ŝ(a) is a unique solution of the following equation to s

(and parameterized by a):16

∑
i∈{m,w}

0.5

∫ ∞

ai

∫ ∞

s

gi(v | a)hi(a)dv da=∆. (EC.61)

(ii) If s(a)> 0, then
∑

i∈{m,w} 0.5
∫∞
ai

∫∞
s(a)

gi(v | a)hi(a)dv da=∆.
(iii) s(a) is continuous in a. Furthermore, its left partial derivative always exists and is non-negative

for all values of a.

16 If a solution of the equation does not exist, we set ŝ(a) =−∞.
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(iv) For any a such that s(a)> 0, the partial derivative of s(a) exists and is given by

∂s(a)

∂ai
=−

∫∞
s(a)

gi(v | ai)hi(ai)dv∑
i∈{m,w}

∫∞
ai
gi(s(a) | a)hi(a)da

< 0, ∀i∈ {m,w}. (EC.62)

Proof of Claim EC.2. Because the hiring mass in equation (EC.60) strictly decreases in s, we have

∑
i∈{m,w}

0.5

∫ ∞

ai

∫ ∞

s

gi(v | a)hi(a)dv da≤∆⇔ s≥ ŝ(a), (EC.63)

which directly implies parts (i) and (ii). Furthermore, because the density functions gi and hi are

continuously differentiable, the implicit function theorem implies that ŝ(a) is continuously differentiable

and its partial derivative is given by

∂ŝ(a)

∂ai
=−

∫∞
ŝ(a)

gi(v | ai)hi(ai)dv∑
i∈{m,w}

∫∞
ai
gi(ŝ(a) | a)hi(a)da

< 0. (EC.64)

Hence, ŝ(a) is continuous and decreasing in each coordinate. This proves parts (iii) and (iv). □
In the following, we recall standard notion of stochastic orders and related properties (see Shaked

and Shanthikumar (2007)). For a univariate random variable X, we use gX and GX to denote its p.d.f.

and C.D.F., respectively.

Definition EC.3. Random variables X said to be smaller than Y in the first stochastic order

(Y ⪰st X) if GX(t)≥GY (t) for all t∈R. Equivalently, E[f(Y )]≥E[f(X)] for increasing function f .

Definition EC.4. Random variables X said to be smaller than Y in the likelihood ratio order

(Y ⪰lr X) if gY (t)/gX(t) increases in t∈R.

Definition EC.5. Random variables X said to be smaller than Y in the increasing convex order

(Y ⪰icx X) if E[f(X)]≤E[f(Y )] for all increasing convex function f .

Fact EC.1. If Y ⪰lr X, then Y ⪰st X.

The following is the standard properties of the normal distributions.

Fact EC.2. Let G(· | a) denote the C.D.F. of the normal distribution N (a, τ 2). Then the family of

distributions {G(· | a) : a∈R} increases in a in the sense of the likelihood ratio order (Definition EC.4),

and therefore in the sense of the first stochastic order (Definition EC.3).

Fact EC.3. Let X ∼ N (µ,σ2) with ϕ (resp., Φ) denoting p.d.f (resp., C.D.F.) of the standard

normal distribution. Then, for any a∈R, E[X |X >a] = µ+σ ϕ(t)

1−Φ(t)
, where t= a−µ

σ
. Hence,

E[(X − a)+] = (1−Φ(t))(µ− a)+σϕ(t). (EC.65)
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EC.3.2. Proof of Proposition 1
We will apply Propositions EC.1 and EC.2 (Appendix EC.2). To do so, we first verify that the

firm’s optimization problem satisfies Assumption EC.1 (i)–(iii). By setting Ψi(a) = 1, (OPT-Meta) in

Appendix EC.2 reduces to (Benchmark). Thus, it immediately follows that Assumption EC.1-(i) and

(ii) are satisfied. For Assumption EC.1-(iii), consider the excess value function for a given s, defined

as Fi(a, s) := E[(v− s)+|a, i]. From Fact EC.2, for any s, the function Fi(a, s) is increasing in a. This

verifies that Assumption EC.1-(iii) holds. Thus, applying Propositions EC.1 and EC.2, we establish

the existence and uniqueness of the firm’s optimal solution. Specifically, the firm’s optimal interview

set A∗ = (A∗
m,A

∗
w) and hiring level s∗ are characterized by optimality conditions (EC.4) and (EC.5).

In particular, by (EC.4), the optimal interview set A∗
i for group i must be a superlevel set of Fi(·, s∗)

at a common level θ:

A∗
i = {a∈R : Fi(a, s

∗)≥ θ}, ∀i∈ {m,w}, (EC.66)

where the level θ is uniquely determined by the interview capacity constraint (2). Since Fi(·, s∗) is

increasing, the superlevel set takes the form of a single greedy interval, yielding A∗
i = [a∗i ,∞) for some

interview threshold a∗i . This proves part (a). Part (b) follows from optimality condition (EC.5).

EC.3.3. Proof of Corollary 1
First, building on Proposition 1, we first characterize the firm’s optimal interview threshold a∗ =

(am, a
∗
w) as a unique solution of Equations (EC.67) and (EC.68).

Lemma EC.2. The optimal interview threshold (a∗m, a
∗
w) is a unique solution satisfying the following:

E[(v− s(a∗))+|a= a∗m,m] =E[(v− s(a∗)+)|a= a∗w,w] (EC.67)∑
i∈{m,w}

0.5

∫
a∗i

hi(a)da=C (EC.68)

where function s(a) is defined in (EC.60) (see Claim EC.2 in Appendix EC.3.1).

Proof of Lemma EC.2. The proof directly follows from Proposition 1 and continuity of the normal

density functions hi. □

Fact EC.4 (Theorem 4 of Müller (2001)). Let X ∼ N (µ1, σ
2
1) and Y ∼ N (µ2, σ

2
2). Then

Y ⪰icx X (see Definition EC.5) if any only if µ1 ≤ µ2 and σ2
1 ≤ σ2

2.

For any s∈R, note that (v− s)+ is an increasing convex function in v. If am ≤ aw, because τm < τw
(Assumption 1-(b)), Fact EC.4 implies that E[(v − s)+|a = am,m] < E[(v − s)+|a = aw,w] for any

s∈R.17 Hence, any a∗ that satisfy equation (EC.67) must satisfy a∗m >a∗w. This completes the proof.

17 One can show that the inequality must be strict as long as τm ̸= τw.
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EC.3.4. Proof of Corollary 2
By mirroring the proof of Proposition EC.1, we can establish that the optimal interview set under
(Intervention) must be greedy in scores within each group, implying Aρ

i = [aρi ,∞) for some interview
threshold aρ = (aρm, a

ρ
w). From Proposition 1, the optimal interview threshold a∗ under (Benchmark)

uniquely exists. If a∗ already satisfies the ρ-Rooney Rule, then it remains the unique optimal solution
under (Intervention), implying aρ = a∗. Otherwise, due to the uniqueness of the unconstrained opti-
mal solution under (Benchmark), the ρ-Rooney Rule must bind, determining the interview threshold
through the equations: 0.5(1−Hw(a

ρ
w)) = ρC and 0.5(1−Hm(a

ρ
m)) = (1− ρ)C. Given aρ, the firm

then maximizes its objective by hiring as many interviewees as possible with the highest non-negative
match values. Hence, the optimal hiring threshold sρ satisfies Equation (9). This completes the proof.

EC.3.5. Proof of Proposition 2
Let a′ = (a′m, a

′
w) equalizes the interview mass for both groups, or equivalently, P[a≥ a′m |m] = P[a≥

a′w |w]. Under this condition, we claim the following.

Claim EC.3. If the finite interview threshold a′ satisfies P[a≥ a′m |m] = P[a≥ a′w |w], then P[v ≥
s | a≥ a′m,m]> P[v≥ s | a≥ a′w,w] for any finite s.

Before proving this claim, we note that the claim directly implies Proposition 2. Specifically, let gi(a, v)
be the joint p.d.f of (a, v) of group i. Claim EC.3 implies that, for any finite s, we have

P[v≥ s | a≥ a′m,m]> P[v≥ s | a≥ a′w,w] (EC.69)

⇔

∫∞
s

∫∞
a′m
gm(v | a)hm(a)dadv

P[a≥ a′m |m]
>

∫∞
s

∫∞
a′w
gw(v | a)hw(a)dadv

P[a≥ a′w |w]
(EC.70)

(∗)⇔
∫ ∞

s

∫ ∞

a′m

gm(v | a)hm(a)dadv >

∫ ∞

s

∫ ∞

a′w

gw(v | a)hw(a)dadv (EC.71)

where (∗) holds because the interview mass is identical between the two groups by our assumption.
It only remains to prove Claim EC.3. For this, we will use the following fact:

Fact EC.5 (Single Crossing of p.d.f. Implies First-order Stochastic Dominance). Let X
and Y be random variables with continuous p.d.f gX and gY , respectively, that satisfy gX(v)> gY (y)

(resp., gX(v)< gY (y)) if v > v (resp.,v < v). Then P[X ≥ s]> P[Y ≥ s] for all finite s.

Proof of Fact EC.5. If s≤ v, then P[X < s] =
∫ s

−∞ gX(v)dv <
∫ s

−∞ gY (v)dv= P[Y < s] (unless s=∞).
If s≥ v, then P[X ≥ s] =

∫∞
s
gX(v)dv >

∫∞
s
gY (v)dv= P[x≥ s] (unless s=−∞). □

To apply Fact EC.5, we will compare p.d.f of v of group i conditional on being interviewed. Specif-
ically, recall that the marginal distribution of v is identical across group i ∈ {m,w} by Assumption
1-(a). Let κ2 := σ2

i + τ
2
i denote the common unconditional variance of v of both groups. We further use

g(v) to denote the common marginal p.d.f. of v for each group. Then, the conditional p.d.f of v, given
that a candidate of group i is interviewed (with a′ ensuring equal interview rates), is given by:

g(v | a≥ a′, i) =
g(v) ·P[a≥ a′i | v, i]

P[a≥ a′i | i]
. (EC.72)
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On the other hand, we have v | a, i∼N (a, τ 2i ) and a | i∼N (0, σ2
i ). Thus, the posterior distribution of

score a of group i conditional on match value v is given by a | {v, i} ∼N
(

σ2
i v

σ2
i +τ2i

,
(

1
σ2
i
+ 1

τ2i

)−1
)

.
Given the above two observations, we now show the following:

g(v | a≥ a′m,m)> g(v | a≥ a′w,w) (EC.73)

⇔P[a≥ a′m | v,m]> P[a≥ a′w | v,w] (EC.74)

⇔Φc

((
a′m − σ2

mv

σ2
m + τ 2m

)
·

√
1

σ2
m

+
1

τ 2m

)
>Φc

((
a′w − σ2

wv

σ2
w + τ 2w

)
·

√
1

σ2
w

+
1

τ 2w

)
(EC.75)

⇔
(
a′m − σ2

mv

κ2

)
·

√
κ2

σ2
mτ

2
m

<

(
a′w − σ2

wv

κ2

)
·

√
κ2

σ2
wτ

2
w

(EC.76)

⇔a′m

√
κ2

σ2
mτ

2
m

− a′w

√
κ2

σ2
wτ

2
w

<

(
σm

τm
− σw

τw

)
v

κ
. (EC.77)

In (EC.74), we used the assumptions that (i) P[a≥ a′m |m] = P[a≥ a′w |w] and (ii) the two groups
have common marginal p.d.f. of v as g(v). In (EC.75), we used the posterior distribution of a | {v, i}.
Line (EC.76) follows from σ2

i + τ 2i is a common value κ2 shared by the two groups from Assumption
1-(a). Finally, Assumption 1-(b) implies that σm/τm >σw/τw. Note that the left-hand side of (EC.77)
is finite by the assumption of a′ being finite. Hence, by Fact EC.5, we conclude that P[v ≥ s | a ≥

a′m, i=m]> P[v≥ s | a≥ a′w, i=w] for all finite s. This completes the proof.

EC.3.6. Detailed Proof Outline of Theorem 1
In this section, we provide a detailed outline of the proof for Theorem 1. We proceed in three steps.18

Step 1: Iso-interview Curve is above Iso-hiring Curve. We first introduce some notation. Con-
sider a scenario where the firm follows a greedy interview strategy with a given interview threshold
a= (am,aw). Given this interview threshold, the firm chooses a hiring threshold to maximize its total
match value subject to the hiring capacity ∆. Note that, the optimal hiring policy in this scenario is
to hire as many interviewees as possible with the highest non-negative match values to fill the hiring
capacity. Building on this observation, we define the interview mass and hiring functions as follows.

Definition EC.6 (Interview & Hiring Mass Given Interview Thresholds). For any given
interview threshold a= (am, aw), we define the following functions:

ηi(a) := 0.5

∫
ai

hi(a)da (EC.78)

s(a) :=min
{
s≥ 0 :

∑
i∈{m,w}

0.5

∫
ai

∫ ∞

s

gi(v | a)hi(a)dv da≤∆
}

(EC.79)

λi(a) := 0.5

∫
ai

∫ ∞

s(a)

gi(v | a)hi(a)dv da (EC.80)

18 Throughout the proof, we implicit assume C < 1 because otherwise the optimal interview threshold ill-defined (i.e.,
the threshold is −∞), and by Assumption 1, both groups are trivially interviewed and hired at equal rates.
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Here, ηi(a) represents the interview mass of group i given the interview threshold a. This threshold a

subsequently determines the optimal (endogenous) hiring threshold s(a) via Equation (EC.79), which
in turn defines the hiring mass of group i, denoted by λi(a). Note that, for a given interview capacity
C, the optimal interview and hiring mass of group i under (Benchmark) is given by ηi(a∗) and λi(a

∗),
respectively.19

En route to establishing our desired results, we first establish a monotonicity property of the hiring
mass function λi(a) in the following lemma.

Lemma EC.3 (Monotonicity of the Hiring Mass Function). For each i ∈ {m,w}, fixing aj

for j ̸= i, the function λi(a) strictly decreases in ai.

We prove Lemma EC.3 in Appendix EC.3.7. Note that Lemma EC.3 implies that the epigraph of the
iso-hiring curve in Figure 2-(b) is the set of interview thresholds where group w is hired less than group
m. Given Definition EC.6 and Lemma EC.3, we formally show that the iso-interview curve is above
the iso-hiring curve in the following.

Proposition EC.3 (Iso-interview Curve is Above Iso-hiring Curve). Define sets ζ and γ

as:
ζ(am) := {aw ∈R : λm(a)−λw(a) = 0}

γ(am) := {aw ∈R : ηm(a)− ηw(a) = 0}
(EC.81)

Then, ζ(·) and γ(·) are functions on R, i.e. |ζ(am)|= 1 and |γ(am)|= 1 for all am ∈R. Furthermore,
epi(γ)⊂ epi(ζ) where epi(f) is the epigraph of function f .

We prove Proposition EC.3 in Appendix EC.3.8. The proof leverages Proposition 2 which states that,
at any interview thresholds on the iso-interview curve, group w is strictly hired less. As such, due to
Lemma EC.3, fixing group m’s interview thresholds, the only way to close the hiring gap is to decrease
group w’s interview threshold. Formally, we show that ζ(am)<γ(am) and thus epi(γ)⊂ epi(ζ).
Step 2: The Optimal Interview Thresholds Curve Crosses the Iso-interview Curve Only
Once. The following proposition formalizes that the optimal interview thresholds curve intersects the
iso-interview curve only once. Specifically, the firm finds it optimal to over-represent group w in the
interview set if and only if C exceeds a certain threshold.

Proposition EC.4 (Single Crossing of Optimal Interview Thresholds and Iso-interview Curve).
For small enough ∆, there exists a unique interview capacity threshold C ∈ [∆,1) such that:

ηm(a
∗)=ηw(a

∗) if and only if C =C.

Furthermore, for any limited interview capacity C ∈ [∆,1), it holds that ηm(a∗)> ηw(a
∗) if and only

if C <C.

19 We remind that the optimal interview threshold a∗ under (Benchmark) is a function of C, but we omit its dependence
on C for brevity.
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We prove Proposition EC.4 in Appendix EC.3.9. The proof establishes several properties of a∗ with
respect to interview capacity C: (i) As the firm increases C, it lowers the thresholds a∗m and a∗w,
expanding interview sets for both groups (Lemma EC.6 - (b)). (ii) However, a∗w decreases faster than
a∗m (Lemma EC.6 - (c)), which formalizes our earlier intuition that a larger interview capacity allows
the firm to explore more candidates from group w.
Step 3: Putting everything together. Finally, we combine the previous two steps to prove Theo-
rem 1. Define:

C := {C ∈ [∆,1) : ηm(a
∗) = ηw(a

∗)},

C :=min{C ∈ [∆,1) : λm(a
∗) = λw(a

∗)}.
(EC.82)

That is, C is the value of (limited) interview capacity C for which the optimal interview threshold
intersects with the iso-interview curve. Note that, by Proposition EC.4, C uniquely exists. On the
other hand, C is the smallest interview capacity such that the optimal interview threshold intersects
with the iso-hiring curve.

Now, by Proposition EC.3 and the continuity of a∗ in C (see Lemma EC.6-(a)), we must have C <C.
With this observation in place to prove Theorem 1, we consider two cases. First, if C <C, group w is
under-represented in both the optimal interview set and the final hiring outcome, as a∗ belongs to the
epigraph of both the iso-interview and iso-hiring curves (green-colored area in Figure 2). In this case,
by Corollary 2, the 0.5-Rooney rule forces the firm to interview more (less, resp.) of group w (group
m, resp.). From Lemma EC.3, this adjustment strictly improves group w’s hiring mass. However, from
Proposition 2, it cannot achieve the equal hiring, thus proving part (a) of Theorem 1. On the other
hand, if C ∈ [C,C], the optimal interview thresholds belong to the epigraph of the iso-hiring curve
but lie below the iso-interview curve. As such, the group w is over-represented in the interview set
but under-represented in the hiring outcome (blue-colored area in Figure 2). In this case, again due to
Corollary 2, the 0.5-Rooney rule does not change the firm’s interview and hiring decisions, leading to
part (b) of Theorem 1. This completes the proof.

EC.3.7. Proof of Lemma EC.3
We prove a stronger result in the following (that directly implies Lemma EC.3).

Lemma EC.4 (Monotonicity of Hiring Mass in Interview Threshold). Let a = (am, aw)

and a′ = (a′m, a
′
w) satisfy a′i ≥ ai and a′j ≤ aj for two distint groups i ̸= j, and at least one of the two

inequalities is strict. Then, λi(a
′)<λi(a) and λj(a

′)>λj(a) (See Definition EC.6).

Proof of Lemma EC.4. Without loss of generlaity, we consider the case where i=m and j =w. Let
λ(a) := λm(a)+λw(a) for any a. We further define

ds := s(a′)− s(a),

dλ := λ(a′)−λ(a).
(EC.83)

We consider four cases described in the following table.
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dλ> 0 dλ= 0 dλ< 0
ds > 0 case 1 case 1 case 4
ds= 0 case 2 case 2 case 2
ds < 0 case 4 case 3 case 3

(i) case 1: Because the density functions gi and hi are strictly positive, we observe that:

λm(a
′) = 0.5

∫
a′m

∫
s(a′)

gm(v|a)hm(a)dv da (EC.84)

< 0.5

∫
am

∫
s(a)

gm(v|a)hm(a)dv da (EC.85)

= λ1,m(a) (EC.86)

where the inequality follows from ds > 0 and a′m ≥ am, as assumed in Case 1. Hence, λm(a
′)<

λm(a), which implies that λw(a
′)>λw(a) because dλ≥ 0.

(ii) cases 2 and 3: The proof follows similarly to case 1 and is therefore omitted for brevity.
(iii) case 4: We claim that this case cannot occur. Suppose for the sake of contradiction that ds > 0

and dλ< 0. Then, either of the following two sub-cases happens. In the first sub-case, s(a) = 0 and
s(a′)> 0. However, from Claim EC.2-(ii) (Appendix EC.3.1), this implies that λ(a)≤∆= λ(a′),
implying that dλ ≥ 0. In the second sub-case, both of s(a) and s(a′) are strictly positive, but
again due to Claim EC.2-(ii), this implies that λ(a) = λ(a′) =∆. In either subcase, we reach to
a contradiction to dλ< 0. By following a similar argument, one can also show a contradiction for
ds < 0 and dλ> 0. This completes the proof. □

EC.3.8. Proof of Proposition EC.3
We first characterize γ(·). Because score a of group i is normally distributed with mean zero and
variance σ2

i , we deduce that η1,m(a) = η1,w(a) if and only if am
σm

=
aw
σw

. In other words, we have

γ(am) =
σw

σm

am. We now turn our attention to ζ(·). First, we show that it is a function. Note that

lim
aw→∞

(λm(a)−λw(a))> 0.

because the hiring mass of group w converges to zero as aw → ∞. Furthermore, letting s :=

limaw→−∞ s(a) and due to the continuity of s(a) (see Claim EC.2 in Appendix EC.3.1), we have:

lim
aw→−∞

λw(a) = 0.5

∫ ∞

s

∫ ∞

−∞
gw(v|a)hw(a)dadv= 0.5Pv∼N (0,κ2)[v≥ s]. (EC.87)

where κ2 := σ2
w + τ 2w = σ2

m + τ 2m (Assumption 1-(a)). On the other hand,

lim
aw→−∞

λm(a) = 0.5

∫ ∞

am

∫ ∞

s

gm(v|a)dv da< 0.5

∫ ∞

−∞

∫ ∞

s

gm(v|a)dv da= 0.5Pv∼N (0,κ2)[v≥ s]

(EC.88)
where we again used Assumption 1-(a) in the last equality. Hence, we must have

lim
aw→−∞

(λm(a)−λw(a))< 0. (EC.89)
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Therefore, by the intermediate value theorem, |ζ(am)| ≥ 1. Furthermore, fixing am, Lemma EC.4
implies that λm(a)−λw(a) is strictly increasing in aw. Thus, we deduce that |ζ(am)|= 1 and therefore
ζ(·) indeed defines a function.

Finally, we show that epi(γ)⊂ epi(ζ). Because γ and ζ are functions on R, it suffices to show that
γ(am)> ζ(am) for all am ∈R. From Proposition 2,

λm(am, γ(am))−λw(am, γ(am))> 0. (EC.90)

Moreoever, from Lemma EC.4, fixing am, the hiring gap λm(a)− λw(a) increases in aw. Hence, by
definition of ζ(am), we must have γ(am)> ζ(am). This completes the proof.

EC.3.9. Proof of Proposition EC.4
To prove Proposition EC.4, we study how the optimal interview threshold changes in the inter-
view capacity C. Toward that end, we first establish several auxiliary results. We first recall from
Lemma EC.2 (Appendix EC.3.3) that the optimal interview threshold can be obtained by solving a
system of equations. For ease of reference, we restate the two equations defining the optimal interview
threshold from Lemma EC.2:

E[(v− s(a∗))+|a= a∗m,m] =E[(v− s(a∗))+|a= a∗w,w] (EC.91)∑
i∈{m,w}

0.5

∫
a∗i

hi(a)da=C (EC.92)

where function s(a) is given by

s(a) :=min
{
s≥ 0 :

∑
i∈{m,w}

0.5

∫
ai

∫ ∞

s

gi(v|a)hi(a)dv da≤∆
}

(EC.93)

We establish some useful properties of the solution that satisfies Equation (EC.91).

Lemma EC.5. For a given a= (am, aw), define function f(a) as follows:

f(a) :=E[(v− s(a))+|a= am,m]−E[(v− s(a))+|a= aw,w]. (EC.94)

Then, for any a such that f(a) = 0, we have:
(a) Ḡm(s(a)|am)> Ḡw(s(a)|aw)

(b) Let ω(am) := {aw : f(a) = 0}. Then ω(am) is a strictly increasing function.

Proof of Lemma EC.5-(a). Throughout the proof, we remind that we use ϕ and Φ to denote p.d.f.
and C.D.F. of the standard normal distribution, respectively. The following fact will be further useful.

Fact EC.6. For any random variable X with continuous C.D.F. (p.d.f., resp.) G(·) (g(·), resp.)
and s∈R,

E[(X − s)+] =

∫ ∞

s

(1−G(x))dx.
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Proof of Fact EC.6.

E[(X − s)+] =

∫ ∞

s

(x− s)g(x)dx=

∫ ∞

s

xg(x)dx− s(1−G(s)) =

∫ ∞

s

∫ x

0

g(x)dydx− s(1−G(s))

(∗)
=

∫ s

0

∫ ∞

s

g(x)dxdy+

∫ ∞

s

∫ ∞

y

g(x)dxdy− s(1−G(s))

=

∫ s

0

(1−G(s))dy+

∫ ∞

s

(1−G(y))dy− s(1−G(s))

=

∫ ∞

s

(1−G(y))dy.

In equality (∗), we changed the order of integrals. The rest of the steps are algebraic. □
From Fact EC.6, we deduce that f(a) = 0 if and only if:∫ ∞

s(a)

Φc

(
x− am
τm

)
dx=

∫ ∞

s(a)

Φc

(
x− aw
τw

)
dx. (EC.95)

We now observe that, because τm < τw (by Assumption 1),

Φc

(
x− am
τm

)
>Φc

(
x− aw
τw

)
⇔ x< x :=

am/τm − aw/τw
1/τm − 1/τw

. (EC.96)

Hence, any s(a) that satisfies (EC.95) must satisfy s(a)<x, or equivalently,

Φc

(
s(a)− am

τm

)
>Φc

(
s(a)− aw

τw

)
, (EC.97)

which leads to the desired result. This completes the proof. □
Proof of Lemma EC.5-(b). In what follows, we use ∂−f(a)

∂ai
to denote the left partial derivative of

function f with respect to ai. Note that, from claim EC.2, the left partial derivative of f(a) exists
because that of s(a) exists.

We proceed in two steps. First, in Claim EC.4, we show that when aw is fixed, there is a unique
am such that f(a) = 0. This does not, by itself, guarantee uniqueness in the other direction (fixing
am and solving for aw). However, by analyzing how the sign of f changes near its root, we show that
uniqueness in the other direction also holds. Such “bi-directional” uniqueness will readily imply that
the curve {a∈R2 : f(a) = 0} defines an injective function, implying that ω(am) is strictly monotone.

Claim EC.4. Define β(aw) := {am : f(a) = 0}. Then, for any β ∈ β(aw),

∂−f(a)

∂am

∣∣∣
(β,aw)

> 0. (EC.98)

Furthermore, |β(aw)|= 1 for any aw ∈R.

Proof of Claim EC.4. From Fact EC.3, for any given s, we have:

E[(v− s)+|a= ai, i] = Φc

(
s− ai
τi

)
(ai − s)+ τiϕ

(
s− ai
τi

)
. (EC.99)
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Hence, using ϕ′(x) =−xϕ(x) and the chain rule, we obtain:

∂−f(a)

∂am
=Φc

(
s(a)− am

τm

)
+
∂−s(a)

∂am︸ ︷︷ ︸
♢

·
[
Φc

(
s(a)− aw

τw

)
−Φc

(
s(a)− am

τm

)]
︸ ︷︷ ︸

♣

. (EC.100)

From Claim EC.2, we have ♢≤ 0 for any a. From Corollary 2- (a), we have ♣< 0 at any a such that
f(a) = 0. Hence, inequality (EC.98) holds. We now observe that that, fixing aw,

lim
am→−∞

f(a) =−E[(v− s(a))+|a= aw,w]< 0, (EC.101)

lim
am→∞

f(a) =∞. (EC.102)

Thus, due to continuity of f(a) (which follows from the contintity of s(a) — see Claim EC.2) and
inequality (EC.98), we must have β(aw) = 1. □

We now prove the uniqueness in the other direction, which will imply the main result we desired.
Recall that we defined ω(am) := {aw : f(a) = 0}. Fixing am, we observe that

lim
aw→−∞

f(a) =E[(v− s(a))+|a= am,m]> 0 (EC.103)

lim
aw→∞

f(a) =−∞. (EC.104)

Hence, due to the continuity of f(a), we have |ω(am)| ≥ 1. Now define ω(am) = maxω(am). Due to
continuity of f , ω(am) is a continuous function. Furthermore, from (EC.103) and (EC.104), f(am, ·)
must change its sign from positive to negative near ω(am). That is,

∂−f

∂aw

∣∣∣∣∣
(am,ω(am))

< 0 (EC.105)

By the implicit function theorem, we then we deduce that ω(·) is a strictly increasing function:

∂−ω(am)

∂am

∣∣∣∣∣
(am,ω(am))

=−∂
−f/∂am
∂−f/∂aw

∣∣∣∣∣
(am,ω(am))

> 0 (EC.106)

where numerator is positive by Claim EC.4 and the denominator is negative by (EC.105).
We now establish that |ω(am)|= 1| for all am. Suppose for a contradiction that |ω(am)|> 1 for some

am. Then, for such am, there exists ω ∈ ω(am) such that ω <ω(am). Because ω(·) is a strictly increasing
function, its inverse ω−1 is well-defined and also an increasing function, implying that ω−1(ω)< am.
At the same time, by definition of ω(·), we have f(am, ω) = 0 and f(ω−1(ω), ω) = 0, and therefore
|β(ω)| ≥ 2. This is a contradiction to Claim EC.4. Hence, we conclude that |ω(am)|= 1. Finally, from
inequality (EC.106), function ω(am) is strictly increasing. □

Building on Lemma EC.5, we now establish comparative statics of the optimal interview threshold
a∗ in the interview capacity C, which will be the main building block of proving Proposition EC.4.

Lemma EC.6. The optimal interview threshold a∗, as a function of C, satisfy the following:
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(a) a∗ is continuous in C.
(b) a∗m and a∗w strictly decreases in C.
(c) a∗m − a∗w strictly increases in C.

Proof of Lemma EC.6-(a). We will use the Berge’s Maximum Theorem.

Definition EC.7 (Section M.H of Mas-Colell et al. (1995)).
1. A correspondence X : Θ ⇒ X is upper hemicontinuous if it has a closed graph and images of

compact sets are bounded.
2. A correspondence X : Θ⇒X is lower hemicontinuous if, for any θ ∈Θ, x ∈ X (θ), and open set
U containing x, there exists a neighborhood V of θ such that X (θ)∩U ̸= ∅ for all θ ∈ V .

Fact EC.7 (Berge’s Maximum Theorem; Theorem M.K.6 of Mas-Colell et al. (1995)).
Let X and Θ be topological spaces, f : X ×Θ → R be a continuous function, and X : Θ ⇒ X be a
compact-valued correspondences such that X (θ) ̸= ∅ for all θ ∈ Θ. Let X ∗(θ) = argmax{f(x, θ) : x ∈
X (θ)} denote the set of maximizers. Then, if X is an upper- and lower hemicontinuous corresopndence,
then X ∗ is upper hemicontinuous.

If an upper-hemicontinuous correspondence is single-valued, it is a continuous function (Theorem
M.H.1. of Mas-Colell et al. (1995)). Hence, because a∗ is unique for each value of C (Proposition 1),
it is a continuous function in C as long as Fact EC.7 can be applied. To apply Fact EC.7, it is
convenient to reformulate the firm’s problem (Benchmark) by introducing variable transformation yi =
Hi(a1,m) for each i∈ {m,w} (we remind that Hi is C.D.F. of score for group i). Based on this variable
transformation, it is straightforward to reformulate (Benchmark) as follows:

max
y=(ym,yw)

V1(y) =
∑

i∈{m,w}

0.5

∫
H−1

i (yi)

∫ ∞

s(y)

vgi(v |H−1
i (y))dv dy (EC.107)

s.t. y ∈X1(C)∩X2(C), (EC.108)

where
s(y) :=min

{
s≥ 0 :

∑
i∈{m,w}

0.5

∫
H−1

i (yi)

∫ ∞

s

gi(v |H−1
i (y))dv dy≤∆

}
, (EC.109)

and X1 : (0,1)⇒R2
+ and X2 : (0,1)⇒R2

+ are correspondences defined as:

X1(C) := {y : 1− 0.5ym − 0.5yw ≤C},

X2(C) := {y : y ∈ [0,1]2}.
(EC.110)

Specifically, X1(C) is the interview capacity constraint.20 The objective function (EC.107) is contin-
uous in y, due to continuity of s(y) from Claim EC.2. Hence, it suffices to show that X1(C)∩X2(C) is a
upper- and lower hemicontinuous correspondence in C. Because X1(C)∩X2(C) is closed and compact-
valued for each C, its upper hemicontinuity is straightforward to deduce from Definition EC.7. For
lower hemicontinuity, we will use the following.
20 For the sake of applying Fact EC.7, it is more convenient to express the interview capacity constraint as inequality.
Such inequality constraint is without loss of optimality because the interview constraint must bind at optimum.
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Fact EC.8 (From Exercise 3.12.d. of Stokey and Lucas Jr (1989)). Let ϕ :X→ Y and ψ :

X → Y be lower-hemicontinuous correspondences, and define correspondence Γ : X → Y as Γ(x) =

ϕ(x) ∩ ψ(y). Suppose Γ(x) ̸= ∅ and int ϕ(x) ∩ int ψ(x) ̸= ∅ for all x ∈ X.21 Then, Γ(·) is lower
hemicontinuous if ϕ and ψ are convex-valued.

To apply the above fact, we first observe that both X1(C) and X2(C) are convex-valued (and
nonempty for each C). Furthermore, X2(C) is trivially lower-hemicontinuous in C as it does not depend
on C. For lower-hemicontinuity of X1(C), we note that X1(C) is a half space, so it suffices to show
that any half-space is lower-hemicontinuous, which we prove in the following:

Fact EC.9. For a ̸= 0, correspondence S(b) := {x∈Rn : a ·x≤ b} is lower-hemicontinuous in b∈R.
That is, for any b0 ∈R, x0 ∈ S(b0), and any open set U ∈Rn containing x0, there exists a neighborhood
V of b0 such that S(b)∩U ̸= ∅ for all b∈ V .

Proof of Fact EC.9. Without loss, let U = {x : ||x−x0||< ϵ} for some ϵ > 0. Let δ= ϵ||a|| and define
V = {b : |b− b0|< δ}. We claim that, for any b ∈ V , there exists x′ such that x′ ∈ S(b)∩U . To prove
this, fix any b ∈ V and define x′ := x0 − b0−b

||a||2a. Then ||x′ − x0||< ϵ by definition of δ. Hence, x′ ∈ U .
Further, we observe that a ·x′ = a ·x0 − (b0 − b)≤ b because x0 ∈ S(b0). Hence, x′ ∈ S(b) as well. □

Hence, by Fact EC.8, we deduce that X1(C)∩X2(C) is lower-hemicontinuous in C. Having proved
that X1(C)∩X2(C) is upper- and lower hemicontinuous, we now apply Fact EC.7 and conclude that
the optimal solution y∗ is continuous in C. Because the optimal interview threshold is given by a∗i =
H−1

i (y∗i ) and Hi(·) is continuous function, it follows that a∗ is continuous in C as well. □
Proof of Lemma EC.6-(b). By Proposition 1 and the definition of ω(am) in Lemma EC.5-(b),

the optimal interview threshold a∗ = (a∗m, a
∗
w) is the unique solution of the following:

ω(am) = aw, (EC.111)

0.5(1−Hm(am))+ 0.5(1−Hw(aw)) =C. (EC.112)

We can further combine the above two equations to solve for am as follows:

ω(am) =H−1
w (2(1−C)−Hm(am)). (EC.113)

The right-hand side of the above equation is strictly decreasing in am and C. On the other hand,
from Lemma EC.5-(b), ω(am) is a continuous and strictly increasing function (note that ω(·) does not
depend on C). Hence, by the standard monotone comparative statics argument, we deduce that a∗m
strictly decreases in C. Furthermore, because a∗w = ω(a∗m) and ω(·) is strictly increasing, a∗w strictly
decreases in C as well. This completes the proof. □

21 We use int(A) to denote the interior of set A.
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Proof of Lemma EC.6-(c). Because a∗i is continuous in C from Lemma EC.6-(a), it suffices to
investigate a sign of the left derivative of a∗m−a∗w with respect to C. Let d−a∗i

dC
denote the left derivative

of a∗i with respect to C. From Lemma EC.5, we recall that the optimal interview threshold a∗ is the
unique solution of the following equations:

f(a) = 0,

0.5(1−Hm(am))+ 0.5(1−Hw(aw)) =C.

Because the left partial derivative of f exists (Claim EC.2-(iii)), we can take the left derivative of
the above two equations with respect to C, and solve for d−a∗i

dC
. After some algebra, we obtain:

d−a∗m
dC

=
−2B

AQ−BP
,

d−a∗w
dC

=
2A

AQ−BP
(EC.114)

where

A :=
∂−f(a)

∂am

∣∣∣
a=a∗

, B :=
∂−f(a)

∂aw

∣∣∣
a=a∗

, P =−hm(a
∗
m), Q=−hw(a

∗
w). (EC.115)

In Claim EC.4, we have proved that A > 0. Furthermore, from part Lemma EC.6-(b), we have
da∗w
dC

< 0. Combining these observations and (EC.114), we deduce that AQ−BP < 0. Thus, to show that
a∗m−a∗w increases in C, it suffices to show that A+B > 0. To do so, by Fact EC.3 and straightforward
algebras, we obtain

A=Φc

(
s(a∗)− a∗m

τm

)
+

[
Φc

(
s(a∗)− a∗w

τw

)
−Φc

(
s(a∗)− a∗m

τm

)]
· ∂

−s(a)

∂am

∣∣∣
a=a∗

, (EC.116)

B =−Φc

(
s(a∗)− a∗w

τw

)
+

[
Φc

(
s(a∗)− a∗w

τw

)
−Φc

(
s(a∗)− a∗m

τm

)]
· ∂

−s(a)

∂aw

∣∣∣
a=a∗

. (EC.117)

Therefore,

A+B =

[
Φc

(
s(a∗)− a∗m

τm

)
−Φc

(
s(a∗)− a∗w

τw

)]
︸ ︷︷ ︸

Term (1)

·
[
1− ∂−s(a)

∂am

∣∣∣
a=a∗

− ∂−s(a)

∂aw

∣∣∣
a=a∗

]
︸ ︷︷ ︸

Term (2)

. (EC.118)

Term (1) is positive by Lemma EC.5-(a), and term (2) is positive by Claim EC.2-(iv). Hence, we
conclude that A+B > 0. This completes the proof. □

As the last building block toward proving Proposition EC.4, we show that, for a small enough ∆

and C =∆, group m is always interviewed more than w.

Lemma EC.7. There exists ∆ such that, for any ∆ ≤ ∆ and C = ∆, a∗ ∈ epi(γ) where γ(·) is
iso-interview curve (see Proposition EC.3).

Proof of Lemma EC.7. To make the dependence of a∗ on C and ∆ clear, let a∗(C,∆) denote the
Firm 1’s optimal interview threshold given (C,∆). Whenever C =∆, for a that satisfies the interview
capacity constraint (2), we must have s(a) = 0 because a mass of interviewed candidates with non-
negative v is at most C =∆. Thus, the equation f(a) = 0 in Lemma EC.5 reduces to:

E[(v)+ | a= am,m] =E[(v)+ | a= aw,w] (EC.119)
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Using Fact EC.3, this equation is equivalent to

Φc

(
−am
τm

)
am + τmϕ

(
−am
τm

)
=Φc

(
−aw
τw

)
aw + τwϕ

(
−aw
τw

)
, (EC.120)

and after some algebra, we deduce from the above equation that:

am
aw

=
Φc
(
−aw

τw

)
Φc

(
−am

τm

)
+ τm

am
ϕ
(
−am

τm

)
− τw

am
ϕ
(
−aw

τw

) (EC.121)

From Proposition 1, the optimal interview threshold at C =∆ must satisfy eq. (EC.121). Furthermore,
we observe that, as C =∆→ 0, any a that satisfy the interview constraint (2) increases to infinity.
Hence, we have

lim
∆→0

a∗m(∆,∆)

a∗w(∆,∆)
= 1. (EC.122)

Therefore, there exists ∆, such that, for all ∆ ≤ ∆, we have a∗(∆,∆) > 0 and a∗w(∆,∆)

a∗m(∆,∆)
> σw

σm
(note

that σw
σm

< 1 due to Assumption 1). Because γ(am) =
σw
σm
aw (Appendix EC.3.8), this implies that

a∗(∆,∆)∈ epi(γ) for all ∆≤∆. This completes the proof. □
We are now ready to prove Proposition EC.4.
Proof of Proposition EC.4. We first show that there exists a value C such that ηm(a∗) = ηw(a

∗)

if C =C. By Lemma EC.7, for sufficiently small ∆, we have ηm(a∗)> ηw(a
∗) when C =∆. Moreover,

since a∗m >a∗w for all C (Corollary 1), it follows that a∗m > 0>a∗w at C = 0.5. Because the iso-interview
line γ(a) = σw

σm
am lies in the first or third quadrants, this implies that ηm(a∗)< ηw(a

∗) when C = 0.5.
By the continuity of a∗ (Lemma EC.6-(a)) and the intermediate value theorem, there exists interview
threshold C ∈ (∆,0.5) such that ηm(a∗) = ηw(a

∗) when C =C.
We now show that such C is unique. Suppose, for contradiction, that there exist two distinct values

of interview capacity, C and C̃ (C < C̃), such that the optimal interview thresholds lie on the iso-
interview curve for all C ∈ {C, C̃}. Let a∗ = (a∗m, a

∗
w) and ã= (ãm, ãw) denote the optimal interview

thresholds at C =C and C = C̃, respectively. From Proposition EC.3 (specifically, the characterization
of the iso-interview line γ(am) = σw

σm
am), we deduce:

a∗w
a∗m

=
ãw
ãm

=
σw

σm

.

Thus, we can express:

a∗m − a∗w = a∗m

(
1− σw

σm

)
, ãm − ãw = ãm

(
1− σw

σm

)
. (EC.123)

On the other hand, Lemma EC.6-(b) establishes that the optimal interview thresholds for both
groups strictly decrease in C. Thus, a∗m > ãm. Combined with σw <σm and the above equations, this
implies that a∗m−a∗w > ãm− ãw. However, this contradicts Lemma EC.6-(c), which states that the gap
a∗m − a∗w must increase in C. Thus, the interview capacity threshold C must be unique.

Finally, as we argued earlier, ηm(a∗)− ηw(a
∗) changes its sign from positive to negative at C =C.

Thus, for any C < 1, it holds that ηm(a∗)−ηw(a∗)> 0 if and only if C <C. This completes the proof.
□
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EC.3.10. Proof of Lemma 1
Recall from Lemma EC.5 that for any a = (am, aw), we define the function f(a) := E[(v − s(a))+ |

am,m]−E[(v− s(a))+ | am,w] and let ω(am) := {aw : f(a) = 0}. In Lemma EC.5-(b), we showed that
ω(am) is a strictly increasing function. Furthermore, by Lemma EC.2, we have ω(a∗m) = a∗w, and by
Corollary 2, it holds that aρm ≥ a∗m and a∗w ≥ aρw. Thus, we must have aρw ≤ ω(aρm). That is, (aρm, aρw)
lies in the hypograph of ω(·). Consequently, we obtain the inequality E[(v− sρ)+ | a= aρm,m]≥E[(v−

sρ)+ | a= aρw,w]. By mirroring the arguments presented in Lemma EC.5-(a), any aρ that satisfies this
inequality must satisfy Ḡm(s

ρ | aρm)> Ḡw(s
ρ | aρw). This completes the proof.

EC.3.11. Proof of Proposition 3
The implication for borderline candidates is straightforward. To prove that the strong candidate’s
hiring probability increases, we show that sρ ≤ s∗ for any ρ > ρ∗. Assume that sρ > 0 since otherwise
the claim is trivial. In the following, we establish that sρ strictly decreases in ρ≥ ρ∗. Define:

E(am, aw, s) :=
∑

i∈{m,w}

0.5

∫ ∞

ai

Ḡi(s | a)hi(a)da.

From Claim EC.2-(i) (Appendix EC.3.1), whenver sρ > 0, we have

E(aρm, a
ρ
w, s

ρ) =∆. (EC.124)

By Corollary 2, for ρ≥ ρ∗, we have aρw =H−1
w (1− 2ρC) and aρm =H−1

m (1− 2C(1− ρ)), which implies

hm(a
ρ
m) ·

daρm
dρ

=−hw(a
ρ
w) ·

daρw
dρ

= 2C. (EC.125)

Differentiating (EC.124) with respect to ρ and using (EC.125), we obtain, for any ρ≥ ρ∗,

dsρ

dρ
=

2C
[
Ḡw(s

ρ | aρw)− Ḡm(s
ρ | aρm)

]∫∞
a
ρ
w
gw(sρ | a)hw(a)da+

∫∞
a
ρ
m
gm(sρ | a)hm(a)da

. (EC.126)

From Lemma 1, the numerator in (EC.126) is negative. Thus, sρ strictly decreases for ρ≥ ρ∗ whenever
sρ > 0. Further, observe that sρ = s∗ for ρ≤ ρ∗. Thus, we conclude that sρ ≤ s∗ for ρ≥ ρ∗. Finally, the
inequality must be strict whenever s∗ > 0 because dsρ

dρ

∣∣∣
ρ=ρ∗

< 0 by (EC.126) if s∗ > 0.

EC.3.12. Group Unaware vs. Aware Benchmark
In our paper, we primarily focus on the group-aware approach (i.e., allowing the interview set to differ
across groups) as our main benchmark. In this section, we show that a group-unaware approach—where
the same interview set applies to both groups—is dominated by the group-aware approach in terms of
both hiring diversity and the firm’s objective.

Corollary EC.1 (Comparison with Group-Unaware Strategy). The group-aware solution
(Benchmark) achieves a higher objective than the group-unaware one. Furthermore, the hiring mass of
group w under the group-aware benchmark is always larger than that under the group-unaware approach.
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Proof of Corollary EC.1. The fact that the optimal group-aware solution has a higher objective
value than the group-unaware one is straightforward since being group-unaware means that we add an
extra constraint am = aw to (Benchmark). Let â denote the optimal interview threshold in the group-
unaware benchmark.22 Note that â is trivially given by the interview capacity constraint (2). However,
by Corollary 1, we must have that a∗w < â< a∗m. By Lemma EC.4, this directly implies that group w’s
hiring mass under the group-unaware solution must be strictly less than that under the group-aware
solution. □

EC.4. Proofs Related to Section 4
EC.4.1. Proof of Proposition 4
Similar to Firm 1’s case, we apply Propositions EC.1 and EC.2 by setting Ψi(a) in (OPT-Meta) as
Ψ(a | a∗

1, s
∗
1) (defined in (13)). Let F2,i(a, s2) = E[(v − s2)+ | a, i]Ψi(a | a∗

1, s
∗
1) denote the discounted

excess value function for a given s2. Since the function Ψ(a | a∗
1, s

∗
1) has only one jump discontinuity

at a= a∗1,i, Assumption EC.1-(ii) is satisfied. We now verify Assumption EC.1-(iii). By Fact EC.2, for
any s2, the function F2,i(a, s2) is increasing for a < a∗1,i. In what follows, we show that F2,i(a, s2) is
unimodal for a> a∗1,i.

Claim EC.5. Let v | a∼N (a, τ 2) and denote its p.d.f. and C.D.F. by g(·|a) and G(·|a), respectively.
Then, for any s1 and s2, function f(a) :=E[(v− s2)+ | a]G(s1|a) is unimodal in a∈R.

Proof of Claim EC.5. From Fact EC.3, we have f ′(a) = (1 − G(s2 | a))G(s1|a) − E[(v − s2)+ |

a]g(s1|a). Thus,

f ′(a) = Ḡ(s2 | a)g(s1 | a)
(
G(s1 | a)
g(s1 | a)

−E[v− s2 | v− s2 ≥ 0, a]

)
︸ ︷︷ ︸

:=D(a)

(EC.127)

By asymptotic properties of the Mills ratio (Sampford 1953), we have lima→−∞D(a) > 0 and
lima→∞D(a) = 0. Thus, the intermediate value theorem implies that there must exists a critical point
a such that f ′(a) = 0. We claim that such critical point must be unique. To show this, note that
f ′(a) = 0 if and only if

E[v− s2 | v− s2 ≥ 0, a] =
G(s1 | a)
g(s1 | a)

. (EC.128)

We claim that the left- and right-hand sides are increasing and decreasing functions in a, respectively,
which in turn implies that the function f must be uniomodal. To show that the left hand side is
increasing in a, we observe that the family of normal distributions N (a− s2, τ

2) is increasing in a in
the likelihood ratio order from Fact EC.2. Therefore, by Theorem 1.C.6 of Shaked and Shanthikumar
(2007), E[v − s2 | v − s2 ∈ A,a] increases in a for any set A, and so does E[v − s2 | v − s2 ≥ 0, a].

22 It is straightforward to show that the optimal interview set under the group-unaware approach must be greedy in
the score, by mirroring arguments of Proposition EC.1.
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For the right-hand side, let R(x) = ϕ(x)/Φ(x) denote the inverse Mills ratio of the standard normal
distribution. Then the RHS is decreasing in a if and only if 1/R( s1−a

τ
) is. The inverse Mills ratio R(x)

is decreasing in x (Sampford 1953). Hence, 1/R( s1−a
τ

) is decreasing in a, implying that the RHS is a
decreasing function in a. □

Thus, applying Propositions EC.1 and EC.2, we conclude that Firm 2’s optimal interview set A∗
2 =

(A2,m,A
∗
2,w) and optimal hiring threshold s∗2 uniquely exist and satisfy the optimality conditions (EC.4)

and (EC.5). By (EC.4), A∗
2,w is a superlevel set of F2,i(a, s

∗
2) with a common level θ, i.e., A∗

2,i = {a :

F2,i(a, s
∗
2) ≥ θ}, where the level θ is uniquely determined by the constraint (15). Furthermore, since

F2,i(a, s
∗
2) is increasing for a < a∗1,i and unimodal for a > a∗1,i, the superlevel set must consist of a

greedy interval below a∗1,i and a non-greedy interval above a∗1,i. Equivalently, A2,i∗ must be of the form
A∗

2,i = [b∗2,i, a
∗
1,i] ∪ [c∗2,i, d

∗
2,i], where −∞ < b∗2,i ≤ a∗1,i ≤ c∗2,i ≤ d∗2,i <∞. This proves part (a). Part (b)

follows directly from the optimality condition (EC.5). This completes the proof.

EC.4.2. Proof of Proposition 5
First, as we argued in Section 4.3, we observe that if Cf =∆f , then firm f must set s∗f = 0 and sρf = 0

whenever Cf = ∆f . Given this observation, we proceed in two steps. First, we show that, for small
enough Cf =∆f , Firm 2 never competes with Firm 1 under (Benchmark). In the second step, we show
that, under (Intervention), Firm 2 replaces all borderline group w candidates with the borderline group
m candidates in their optimal interview set. As such, because s∗f = sρf = 0, we must have λ∗

2,w > λρ
2,w

for all ρ> ρ∗. We elaborate each step in the following.
Step 1: For small enough Cf =∆f , Firm 2 does not compete with Firm 1. For notational
brevity, define

F2,i(a) :=E[(v)+ | a, i]Ψi(a | a∗
1,0). (EC.129)

By Proposition 4, Firm 2’s optimal interview set under (Benchmark) is given by

A∗
2,i = {a : Fi(a)≥ θ(C2)}, (EC.130)

where θ(C2) is uniquely determined such that the total mass of the interview set is C2, i.e.,∑
i∈{m,w}

0.5

∫
{a:F2,i(a)≥θ(C2)}

dHi(a) =C2. (EC.131)

We now specify φ1 and φ2 such that if Cf =∆f ≤ φf , Firm 2 does not compete with Firm 1. To
begin, define

ki :=max
a∈R

E[(v)+ | a, i]Gi(0 | a). (EC.132)

Note that ki is independent of the capacity parameters. Further, because a∗1,i decreases in C1

(Lemma EC.6-(b)), there exists φ1 such that for all C1 ≤φ1, we have ki ≤ lima↑a∗1,i Fi(a). We now define
φ2. Note that θ(C2) in equation (EC.130) decreases in C2. Hence, there exists φ2 such that for all C2 ≤
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φ2, it holds that θ(C2)≥max{km, kw}. Putting everything together, it follows that A∗
2,i∩ [a∗1,i,∞) = ∅

for all i∈ {m,w} whenever Cf =∆f ≤φf for all f ∈ {1,2} (see Figure 4 in Section 4.3 for illustration).
Step 2: Firm 2 hires fewer group w under (Intervention) for all ρ> ρ∗. Similar to F2,i(a) in

the previous step, for ρ> ρ∗, define a function:

F2,i(a | ρ) =E[(v)+ | a, i]Ψi(a | a∗
1(ρ),0). (EC.133)

Then, by Proposition 4, Firm 2’s optimal interview set A∗
2,i(ρ) under (Intervention) is given by

Aρ
2,i = {a : Fi(a | ρ)≥ θ(C2 | ρ)}, (EC.134)

where θ(C2 | ρ) is uniquely determined such that the total mass of the interview set is C2, i.e.,∑
i∈{m,w}

0.5

∫
{a:F2,i(a|ρ)≥θ(C2|ρ)}

dHi(a) =C2. (EC.135)

We now claim that θ(C2) = θ(C2 | ρ). To see why, we recall that (i) aρ1,m (aρ1,w, resp.) strictly increases
(decreases, resp.) in ρ≥ ρ∗ (Corollary 2) and (ii) Fi(a | ρ) increases in a< aρ1,i. Thus, we have

inf
a∈(a∗1,m,a

ρ
1,m)

Fm(a | ρ) = Fm(a
∗
1,m | ρ)> θ(C2). (EC.136)

On the other hand, because F2,w(a | ρ) is unimodal on a > aρ1,w, and due to the definition of ki in
(EC.132), we have

θ(C2)≥ ki > sup
a∈(a

ρ
1,w,a∗1,w)

Fw(a | ρ) (EC.137)

for all ρ> ρ∗ (see Figure 4 in Section 4.3 for illustration).
Finally, we note that F2,i(a | ρ) = F2,i(a) except for all a of the borderline candidates (i.e. a ∈

[a∗1,m, a
ρ
1,m] for group m and a ∈ [aρ1,w, a

∗
1,w] for group w) because s∗f = sρf = 0, f ∈ {1,2}. Combined

with (EC.136) and (EC.137), this implies that

{a : Fm(a | ρ)≥ θ(C2)}=A∗
2,m ∪ [a∗m, a

ρ
m]

{a : Fw(a | ρ)≥ θ(C2)}=A∗
2,w \ [aρw, a∗w].

(EC.138)

However, we have:∑
i∈{m,w}

0.5

∫
{a:Fi(a|ρ)≥θ(C2)}

dHi(a) =
∑

i∈{m,w}

0.5

∫
A∗

2,i

dHi(a)+ 0.5

(∫ a
ρ
1,m

a∗1,m

dHm(a)−
∫ a∗1,w

a
ρ
1,w

dHw(a)

)
=C2,

where the equality is due to
∫ a

ρ
1,m

a∗1,m
dHm(a) =

∫ a∗1,w
a
ρ
1,w

dHw(a) (by Corollary 2), and the total mass of
(A∗

2,m,A
∗
2,w) is C2 by definition. Hence, by (EC.134) and (EC.135), we conclude that θ(C2 | ρ) = θ(C2).

As such, Firm 2’s interview set under (Intervention) must be given by (EC.138). That is, Firm 2 replaces
all of borderline group w with borderline group m. Combing with the fact that the hiring threshold
for Firm 2 remains zero when C2 =∆2, it follows that Firm 2 hires strictly fewer group w candidates
under (Intervention) for all ρ> ρ∗. This completes the proof.
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EC.4.3. Proof of Proposition 6
Define the following set:

Dρ
w := [aρ1,w, a

∗
1,w]∩A∗

2,w \Aρ
2,w (EC.139)

Dρ
m := [a∗1,m, a

ρ
1,m]∩A

ρ
2,m \A∗

2,m (EC.140)

That is, Dρ
w is borderline group w candidates who lose an interview spot from Firm 2 due to Firm 1’s

adoption of the ρ-Rooney rule. Similarly, Dρ
m is borderline group m candidates who gain an interview

spot from Firm 2. Let µρ
i (C1,C2) denote a mass of Dρ

i under the interview capacities (C1,C2) and the
ρ-Rooney rule. In Proposition 5, we showed that µρ

i (∆1,∆2) > 0 for all ρ > ρ∗. We will extend this
result for all (C1,C2) in a neighborhood of (∆1,∆2). To do so, in the following lemma, we first show
that the function µρ

i (C1,C2) is continuous in (C1,C2) and ρ. To show this, it suffices to establish that
the endpoints of A∗

2,i and Aρ
2,i (characterized by Proposition 4) vary continuously with (C1,C2) and ρ.

We establish this in the following lemma, proven at the end of this section.

Lemma EC.8. The end points of A∗
2,i and Aρ

2,i are continuous in (C1,C2) and ρ.

We combine the above lemma with the following auxiliary claims to deduce our desired result. Recall
that, we defined ρ∗ as Firm 1’s interview fraction of group w under the benchmark (Equation (4)).
Fixing ∆1, this interview fraction is a function of the interview capacity C1 ≥∆1. Hereafter, we write
ρ∗(C1) to explicitly indicate its dependence on C1 (for a fixed ∆1). In the following claim, we show
that this fraction increases when C1 =∆1 for sufficiently small ∆1.

Claim EC.6. For sufficiently small ∆1, we have dρ∗(C1)

dC1

∣∣∣
C1=∆1

> 0.

The next claim allows us to use the continuity of µρ
i (C1,C2) to extend the positivity of µρ

i (∆1,∆2)

to a broader range of (C1,C2) whenever the ρ-Rooney rule applies.

Claim EC.7. Let f : R3 → R and ρ∗ : R → R be continuous functions. Suppose there is a point
(∆1,∆2)∈R2 such that (i) for every ρ> ρ∗(∆1), we have f

(
∆1,∆2, ρ

)
> 0 and (ii) dρ∗(C1)

dC1

∣∣∣
C1=∆1

> 0.
Then there exists C̄f >∆f , f ∈ {1,2}, such that for all Cf ∈ [∆f , C̄f ], we have f(C1,C2, ρ)> 0 whenever
ρ> ρ∗(C1).

The proofs of Claims EC.6 and EC.7 can be found at the end of this section.
To complete the proof of Proposition 6, fix small enough (∆1,∆2). In the proof of Proposition 5, we

showed that at C1 =∆1 and C2 =∆2, Firm 2 replaces all borderline group w candidates in its interview
set with all borderline group m whenever Firm 1 adopts the ρ-Rooney rule with ρ > ρ∗(∆1). In other
words, µρ

i (∆1,∆2)> 0 for any ρ > ρ∗(∆1) and all i ∈ {m,w}. Because Firm 1’s interview threshold is
continuous in C1 (Lemma EC.6–(a)), it follows that ρ∗(C1) is continuous in C1. Since µρ

i (C1,C2) varies
continuously in (C1,C2) and ρ (by Lemma EC.8) and ρ∗(C1) is strictly increasing at C1 = ∆1 (by
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Claim EC.6), we apply Claim EC.7 to conclude that there exists C̄f >∆f such that if Cf ∈ [∆f , C̄f ],
we have µρ

i (C1,C2)> 0 for all ρ> ρ∗(C1) and both i∈ {m,w}.
Proof of Lemma EC.8. Similar to Firm 1’s case ( Lemma EC.6–(a)), the proof follows from an

application of Berge’s maximum theorem (Fact EC.7), although verifying the conditions for applying
Fact EC.7 is more intricate. We focus on showing the continuity of the endpoints of A∗

2,i in (C1,C2).
The argument for Aρ

2,i and its continuity in ρ proceeds in a similar way.
From Proposition 4, Firm 2’s optimal interview set is given by A∗

2,i = [b∗2,i, a
∗
1,i] ∪ [c∗2,i, d

∗
2,i] for

some b∗2,i ≤ a∗1,i ≤ c∗2,i ≤ d∗2,i. As such, Firm 2’s optimal interview set is characterized by a set of end
points E∗ = {b∗2,i, c∗2,i, d∗2,i : i ∈ {m,w}}. To establish continuity of E∗ in (C1,C2), we first introduce
the change of variables y1,i :=Hi(b2,i), y2,i :=Hi(c2,i), and y3,i :=Hi(d2,i). Further, let yi = {yk,i : k ∈

{1,2,3}, i∈ {m,w}} and y= (ym,yw)∈R6. We can then express Firm 2’s interview set as A2,i(y) :=

[H−1
i (y1,i), a

∗
1,i]∪ [H−1

i (y2,i),H
−1
i (y3,i)], and the Firm 2’s optimization problem is equivalent to finding

the optimal (transformed) end points y∗ ∈R6. With a slight abuse of notation (and in a similar vein
of Claim EC.2), we further define function s2(·) :R6 →R,

s2(y) =min
{
s≥ 0 :

∑
i∈{m,w}

0.5

∫
A2,i(y)

∫ ∞

s

gi(v | a)hi(a)Ψi(a | a∗
1, s

∗
1)dv da≤∆

}
. (EC.141)

Then, the optimal transformed end point y∗ = (y∗
m,y

∗
w) solves the following optimization problem:

max
yi=(y1,i,y2,i,y3,i)

i∈{m,w}

∑
i∈{m,w}

0.5

∫
A2,i(y)

∫ ∞

s2(y)

vgi(v |H−1
i (y))Ψi(H

−1
i (y) | a∗

1, s
∗
1)dv dy (EC.142)

s.t. y ∈Y1(C1,C2)∩Y2(C1,C2), (EC.143)

where (i) we recall the definition of function s2(·) from line (EC.141) and (ii) Y1 : (0,1)
2 ⇒ R6

+ and
Y2 : (0,1)

2 ⇒R6
+ are correspondences defined as:

Y1(C1,C2) = {(ym,yw)∈ [0,1]6 : y1,i ≤Hi(a
∗
1,i)≤ y2,i ≤ y3,i, ∀i∈ {m,w}} (EC.144)

Y2(C1,C2) =
{
(ym,yw)∈ [0,1]6 :

∑
i∈{m,w}

0.5(Hi(a
∗
1,i)− y1,i + y3,i − y2,i)≤C2

}
(EC.145)

Here, Y1(C1,C2) enforces the condition b2,i ≤ a∗1,i ≤ c2,i ≤ d2,i and Y2(C1,C2) represents the interview
capacity constraint (15).23 We now apply Fact EC.7 to deduce the continuity of y∗ in (C1,C2), which
implies continuity of E∗ by the continuity of Hi. Since s2(y) is continuous,24 the objective function
(EC.142) is continuous in y. Next, we establish that the constraint set Y1(C1,C2)∩Y2(C1,C2) is upper-
and lower-hemicontinuous (see Definition EC.7). Upper hemicontinuity is immediate because a∗1,i is
continuous in C1 (Lemma EC.6-(a)) and both Y1(C1,C2) and Y2(C1,C2) are compact-valued. For
lower-hemicontinuity, note that Y1(C1,C2) and Y2(C1,C2) can each be expressed as the intersection of

23 The inequality is without loss because, at optimum, the interview capacity constraint must bind.
24 One can mirror the prof of Claim EC.2 to show that s2(y) is continuous in y.
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finitely many half-spaces of the form {y : c ·y≤ b(C1,C2)}, where c is a constant vector and b(C1,C2)

is a continuous function. By Fact EC.8,25 it suffices to show that each of such half-spaces is lower-
hemicontinuous.

Claim EC.8. For c∈Rn and C∈Rm, let b(C) be a continuous function in C and define S(C) :=

{x ∈ Rn : c · x ≤ b(C)}. Then S(C) is lower-hemicontinuous in C. That is, for any C0 ∈ Rm, x0 ∈

S(C0), and any open set V containing x0, there exists a neighborhood U of C0 such that S(C)∩V ̸= ∅

for all C∈U .

Proof of Claim EC.8. Without loss of generality, let V = {y ∈Rn : ||y−x0||< ϵ} for some ϵ > 0.
For such ϵ, because b(C) is a continuous function, there exists a neighborhood U of C0 such that
|b(C)− b(C0)| < ϵ||c||

4
for all C ∈ U . Take y′ := x0 − ϵ

2||c||c. We claim that y′ ∈ S(C) ∩ V whenever
C∈U . Clearly, ||y′ −x0||= ϵ

2
, and thus y′ ∈ V . Further,

c ·y′ = c ·x0 −
ϵ

2
||c|| ≤ b(C0)−

ϵ

2
||c|| ≤ b(C)− ϵ

4
||c||. (EC.146)

The first inequality follows because x0 ∈ S(C0). The last inequality follows from the definition of U .
Hence, we deduce that y′ ∈ S(C), as desired. □

Therefore, we can apply Fact EC.7 to the optimization problem (EC.142)-(EC.143) and deduce that
the optimal solution y∗ is continuous in (C1,C2). Hence, the end points of A∗

2,i are continuous. This
completes the proof. □

Proof of Claim EC.6. From (EC.122) in Appendix EC.3.9, a∗1,m/a∗1,w → 1 if C1 = ∆1 and as
∆1 → 0. Thus, for small enough C1 =∆1, we can approximate a∗1,m = a∗1,w = a∗ for some a∗ > 0. In
this regime, we can express ρ∗(C1) = (R(a∗) + 1)−1 where R(a∗) := Φc(a∗/σm)

Φc(a∗/σw)
(we remind that we use

ϕ and Φ to denote the p.d.f. and C.D.F. of standard normal distribution, respectively). Note that a∗

decreases in C1 because 0.5Φc(a∗/σm) + 0.5Φc(a∗/σw) =C1. Thus, to prove dρ∗

dC1

∣∣∣
C1=∆1

> 0, it suffices
to show that R(a∗) increases in a∗ > 0. Let h(x) = ϕ(x)/Φc(x) denote the hazard ratio function. The
ratio R(a∗) increases in a∗ for a∗ > 0 if and only if h(a∗/σw)

h(a∗/σm)
> σw

σm
. Since h(x) is an increasing function

(Sampford 1953) and σm >σw, we conclude that R(a∗) increases in a∗ > 0, as desired. □
Proof of Claim EC.7. Suppose, for contradiction, that no such Cf >∆f exists. Then for every

n∈N, we can pick (C1,n,C2,n) and ρn >ρ∗(C1,n) such that C1,n ∈ [∆1,∆1+1/n], C2,n ∈ [∆2,∆2+1/n],
but f(C1,n,C2,n, ρn)≤ 0. We will show that no such “bad” sequence exists using continuity of f and ρ∗.
Let ρ∞ be a limit of {ρn}, so (C1,n,C2,n, ρn)→ (∆1,∆2, ρ∞). Since ρn > ρ∗(C1,n) for all n, continuity
of ρ∗ implies ρ∞ ≥ ρ∗(∆1). We now consider the following two cases.

Case 1: ρ∞ >ρ∗(∆1). By hypothesis (i), we have f(∆1,∆2, ρ∞)> 0. However, by continuity of f , it
holds that f(C1,n,C2,n, ρn)→ f(∆1,∆2, ρ∞)> 0, contradicting f(C1,n,C2,n, ρn)≤ 0.

25 Because a finite intersection of convex sets is convex, Fact EC.8 implies that a finite intersection of convex-valued
lower-hemicontinuous correspondences is also lower-hemicontinuous.
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Case 2: ρ∞ = ρ∗(∆1). By hypothesis (ii), we have ρ∗(C1,n) ≥ ρ∗(∆1) for large enough n. Since

ρn > ρ∗(C1,n) by construction, it follows that ρn > ρ∗(∆1) for large n. Thus, by hypothesis (i),

f(∆1,∆2, ρn)> 0 for all large n. However, by continuity of f and (C1,n,C2,n)→ (∆1,∆2) as n→∞,

it holds that f(C1,n,C2,n, ρn)> 0 eventually, again contradicting f(C1,n,C2,n, ρn)≤ 0.

Thus, no such sequence {(C1,n,C2,n, ρn)} exists, implying that there must exist C̄f >∆f , f ∈ {1,2}

such that for all Cf ∈ [∆f , C̄f ], we have f(C1,C2, ρ)> 0 whenever ρ> ρ∗(C1). □

EC.4.4. Proof of Proposition 7
Fix a value of C1 and ρ> ρ∗. Part (a) follows immediately from sρ1 ≤ s∗1 as established in Proposition 3

(Appendix EC.4.4). To establish parts (b) and (c), we show that for a given C1, there exists C̄2 such

that if C2 ≤ C̄2,26

max{s∗2, s
ρ
2} ≤ sρ1. (EC.147)

Note that (EC.147) implies parts (b) and (c). To see why, let Dρ
w denote the subset of borderline

group w candidates who lose an interview spot from Firm 2 due to Firm 1’s adption of the ρ Rooney

rule (see (EC.139)). By definition, such candidates gain an interview spot from Firm 1. Consequently,

for any group w candidate with score a ∈ Dρ
w, their hiring probability changes from Ḡw(s

∗
2 | a) to

Ḡw(s
ρ
1 | a). Thus, for C2 ≤ C̄2, their hiring probability decreases, implying part (b). Similarly, define

Dρ
m as the subset of borderline group m candidates who gain an interview spot from Firm 2. Noting

that min{sρ1, s∗1}= sρ1 (Proposition 3), we deduce part (c) from inequality (EC.147).

To prove (EC.147), we show that Firm 2’s optimal hiring threshold increases in C2.

Lemma EC.9. Both s∗2 and sρ2 increase in C2 ∈ [∆2,1].

Proof of Lemma EC.9. We provide the proof for the case of s∗2. The proof sρ2 follows a similar

argument. Let C2 < C̃2. With a slight abuse of notation, we use s∗2 and s̃2 to denote the optimal hiring

threshold given C2 and C̃2, respectively. Given these notations, it suffices to show that s∗2 ≤ s̃2.

Toward that goal, we recall notation from Definition EC.1 and Definition EC.2 (Appendix EC.2.2).

Specifically, letting F2,i(a, s2) := E[(v − s2)+|a, i]Ψi(a|a∗
1, s

∗
1), set Bi(s2,C2) from Definition EC.1 is

given by:

Bi(s2,C2) := {a∈R : F2,i(a, s2)≥ θ(C2)}, ∀i∈ {m,w}. (EC.148)

where θ(C2) is the unique solution of the following equation in θ (and parameterized by s2 and C2):∑
i∈{m,w}

0.5

∫
{a:F2,i(a,s2)≥θ}

hi(a)da=C2, (EC.149)

26 Note that we fix a value of C1 and consider a fixed ρ > ρ∗, where ρ∗ depends on C1. Thus, the interview capacity
threshold C̄2 may depend on C1 and ρ.
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Furthermore, from Definition EC.2, we recall the following function λ(B,s) given interview set
B = (Bm,Bw) and (arbitrary) hiring threshold s as follows:

λ(B,s) =
∑

i∈{m,w}

0.5

∫
Bi

∫ ∞

s

gi(v | a)hi(a)Ψi(a)dv da. (EC.150)

Assume s∗2 > 0 because otherwise the result trivial follows. Then, from the fixed-point equation
(EC.41) (Appendix EC.2.2), s∗2 must be the unique solution to the following equation (with respect to
s2):

λ(B(s2,C2), s2) =∆2. (EC.151)

Building on these observations, we proceed in the following two steps to show that s∗2 ≤ s̃2.
Step 1: We first claim that Bi(s2,C2)⊆Bi(s2, C̃2) for any C̃2 >C2 and s2. To see this, because
hi is a strictly positive continuous density function, we observe that θ(C2) defined through (EC.148)
and (EC.149) strictly decreases in C2. Hence, we must have θ(C̃2) < θ(C2) for any C̃2 > C2, which
implies that Bi(s2,C2)⊆Bi(s2, C̃2).
Step 2: Using Step 1, we show that s̃2 ≥ s∗2. We first observe that λ(B,s)≤ λ(B̃, s) for any B ⊆ B̃.
Hence, from Step 1, we deduce that

λ(B(s∗2, C̃2), s
∗
2)≥ λ(B(s∗2,C2), s

∗
2) =∆2. (EC.152)

Further, for any fixed C2, Lemma EC.1 establishes that λ(B(s2,C2), s2) decreases in s2. Hence, because
s̃2 must satisfy λ(B(s̃2, C̃2), s̃2) = ∆2 (from the fixed-point equation (EC.41)), inequality (EC.152)
implies that s̃2 ≥ s∗2. This completes the proof. □

We are now ready to prove (EC.147). Let κ = σ2
m + τ 2m = σ2

w + τ 2w (Assumption 1-(a)). If C2 = 1,
the Firm 2’s interview set is simply the entire population. Hence, the match value distribution of
interviewees is v ∼ N (0, κ), thus s∗2 = sρ2 =

√
κΦ−1(1 − ∆2). On the other hand, if C2 = ∆2, then

s∗2 = sρ2 = 0 due to equation (19). By Lemma EC.9, the maximum (respectively, minimum) values
of both s∗2 and sρ2 are attained when C2 = 1 (respectively, C2 = ∆2). Thus, if sρ1 >

√
κΦ−1(1−∆2),

we have maxC2∈[∆2,1]max(s∗2, s
ρ
2) =

√
κΦ−1(1 −∆2) < sρ1 for all C2 ∈ [∆2,1]. Otherwise, we observe

that minC2∈[∆2,1]max(s∗2, s
ρ
2) = 0. By Lemma EC.8, the end points of the Firm 2’s interview set are

continuous in C2, and thus max(s∗2, s
ρ
2) is continuous in C2. Hence, the intermediate value theorem and

Lemma EC.9 imply that there exists C2 ≥∆2 such that max(s∗2, s
ρ
2)≤ sρ1 if C2 ≤ C2. This completes

the proof.

EC.5. Beyond Normal Distributions
EC.5.1. Distributions with Increasing Yield Property (Vohra and Yoder 2023)
Vohra and Yoder (2023) consider a similar two-stage hiring model with a single social group, where
candidates are characterized solely by their pre-interview scores. Their work focuses on a specific class
of conditional match value distributions satisfying the “increasing yield’’ property (detailed later),
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under which the upper interval of Firm 2’s interview set is also greedy in the score as well. In this
section, we show that our meta-characterization recovers the structural results of Vohra and Yoder
(2023) as a special case. Specifically, when the increasing yield condition is satisfied, our framework
(Proposition EC.1) reproduces the greedy structure of upper interval in Firm 2’s interview set.

For simplicity, consistent with Vohra and Yoder (2023), we focus on a single-group setting and thus
omit subscript i for groups. We begin by stating the regularity conditions considered in Vohra and
Yoder (2023) and the corresponding results.

Assumption EC.2 (Regularity Conditions of Vohra and Yoder (2023)).
(a) Hazard rate order: G(· | a) is increasing in the hazard order. That is, for a′ >a and s′ > s,

Ḡ(s′ | a′)Ḡ(s | a)≥ Ḡ(s | a′)Ḡ(s′ | a),

where Ḡ(s | a) := 1−G(s | a).
(b) Increasing yield: For all s1, s2 ≥ 0, the function

(∫∞
s2
vg(v | a)dv

)
·G(s1 | a) is increasing in a.

There are a few conditional match-value distributions that satisfy the increasing yield property.
For example, Vohra and Yoder (2023) showed the increasing yield property holds if v | a follows an
exponential distribution with mean λ(a), where λ :R→R is an increasing function.

Based on the above assumption, Vohra and Yoder (2023) establish the following result:

Corollary EC.2 (Proposition 3 of Vohra and Yoder (2023)). There exists an equilibrium
in which:

1. Firm 1’s optimal interview set is A∗
1 = [a∗1,∞) for some interview threshold a∗1 ∈R

2. Firm 2’s interview set is A∗
2 = [b∗2, a

∗
1]∪ [c∗2,∞) for some end points (b∗2, c

∗
2) such that b∗2 ≤ a∗1 ≤ c∗2.

We now prove Corollary EC.2 using Proposition EC.1.27 Because Assumptions EC.1-(i) and (ii)
are trivially satisfied, it suffices to verify Assumption EC.1-(iii) by investigating monotonicity of the
(discounted) excess value function.

Firm 1: By setting Ψ(a) = 1, the optimization problem in (EC.1)-(EC.3) reduces to Firm 1’s
problem. Let F (a, s1) := E[(v− s1)+ | a] denote the excess value function for a given hiring threshold
s1. Under Assumption EC.2-(a), the function F (a, s1) is increasing in a for any s1 (Theorem 1.B.1 of
Shaked and Shanthikumar (2007)). This implies that F (a, s1) satisfies Assumption EC.1-(iii), allowing
us to apply Proposition EC.1. By Proposition EC.1, the optimal interview set A∗

1 must be a superlevel
set of F (a, s∗1), i.e., A∗

1 = {a : F (a, s∗1)≥ θ} for some threshold θ. Furthermore, since F (a, s∗1) is strictly
increasing in a, this superlevel set must be a single greedy interval of the form A∗

1 = [a∗1,∞).
Firm 2: Given Firm 1’s strategy (A∗

1 = [a∗1,∞) and s∗1), the optimization problem in (EC.1)-
(EC.3) reduces to Firm 2’s problem by setting Ψ(a) = 1[a < a∗1] + 1[a≥ a∗1]G(s

∗
1 | a). Let F2(a, s2) :=

27 Indeed, we can further apply Proposition EC.2 to conclude that such equilibrium uniquely exists.
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E[(v− s2)+ | a]Ψ(a) denote the discounted excess value function for a given hiring threshold s2. Under
Assumption EC.2-(a), the function F2(a, s2) is increasing in a for a < a∗1 (Theorem 1.B.1 of Shaked
and Shanthikumar (2007)). In the following lemma, we establish that F2(a, s2) is also increasing for
a> a∗1 under Assumption EC.2. Since F2(a, s2) satisfies Assumption EC.1-(iii), we can apply Proposi-
tion EC.1, which implies that Firm 2’s optimal interview set A∗

2 must be a superlevel set of F2(a, s
∗
2).

Furthermore, since F2(a, s
∗
2) is increasing both for a< a∗1 and for a> a∗1, the superlevel set consists of

two disjoint greedy intervals, one below a∗1 and one above it, as desired.

Lemma EC.10. Under Assumption EC.2, (
∫∞
s2
(v− s2)g(v|a)dv) ·G(s1|a) increases in a.

Proof of Lemma EC.10. Fix s2 ≥ 0 and s1 ≥ 0. We observe Assumption EC.2-(b) holds if and only
if

∂
∂a

∫∞
s2
vg(v|a)dv∫∞

s2
vg(v|a)dv

≥−
∂
∂a
G(s1|a)
G(s1|a)

. (EC.153)

On the other hand, (
∫∞
s2
(v− s2)g(v|a)dv) ·G(s1|a) increases in a if and only if

∂
∂a

∫∞
s2
(v− s2)g(v|a)dv∫∞

s2
(v− s2)g(v|a)dv

≥−
∂
∂a
G(s1|a)
G(s1|a)

. (EC.154)

We claim that
∂
∂a

∫∞
s2
(v− s2)g(v|a)dv∫∞

s2
(v− s2)g(v|a)dv

≥
∂
∂a

∫∞
s2
vg(v|a)dv∫∞

s2
vg(v|a)dv

(EC.155)

under Assumption EC.2, which will directly imply our desired result. Indeed, through straightforward
algebra, one can show that inequality (EC.155) is true if and only if

∂
∂a

∫∞
s2
vg(v|a)dv∫∞

s2
vg(v|a)dv

≥
∂
∂a
Ḡ(s2|a)
Ḡ(s2|a)

. (EC.156)

From Theorem 1.B.7 of Shaked and Shanthikumar (2007), Assumption EC.2-(a) implies that E[v|v≥
s2, a] increases in a. That is,

∂

∂a
E[v|v≥ s2, a] =

∂

∂a

(∫∞
s2
vg(v|a)da
Ḡ(s2|a)

)
(EC.157)

=

(
∂
∂a

∫∞
s2
vg(v|a)dv

)
· Ḡ(s2|a)−

(∫∞
s2
vg(v|a)dv

)
·
(

∂
∂a
Ḡ(s2|a)

)
Ḡ2(s2|a)

≥ 0 (EC.158)

which is equivalent to inequality (EC.156). □

EC.5.2. Gumbel Distributions
In Proposition 4 (proved in Appendix EC.4.1), we established that the lower-ranked firm in our model
adopts a non-greedy interview strategy, thus forgoing “superstar” candidates (see Appendix EC.4.1 for
proofs). As highlighted in Remark 1, this strategy is natural and aligns with anecdotal evidence in labor
markets. To further illustrate how such a non-greedy strategy emerges in different settings beyond our
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context, we demonstrate that the Gumbel distribution, a foundational model in the consumer choice
framework, similarly leads to a non-greedy structure in the strategy of the lower-ranked firm.

We first introduce some notations. We denote the Gumbel distribution with location parameter
a ∈ R and scale parameter β > 0 by Gumbel(µ,β). If a random variable X follows Gumbel(µ,β), its
p.d.f is given by (Ben-Akiva 1985)

f(x | µ,β) = exp

(
−x−µ

β
− exp

(
−x−µ

β

))
(EC.159)

and its C.D.F. is given by

F (x | µ,β) = exp

(
− exp

(
−x−µ

β

))
. (EC.160)

It is further known that the mean of Gumbel(µ,β) is given by E[X] = µ+ βγ where γ ≈ 0.5772 is
the Euler–Mascheroni constant.

For simplicity, similar to Vohra and Yoder (2023), we consider a single-group setting and omit and
subscript i. Recall that we use g(· | a) and G(· | a) to denote the p.d.f. and C.D.F. of conditional match
value v | a. Suppose that a conditional match value distribution is given by v | a∼ Gumbel(a− γ,1).
Here, without loss generality, we standardized the scale parameter as β = 1 (all of the results naturally
extend to β ̸= 1). Note that E[v | a] = a, thus the expected match value of a candidate equals to their
score (similar to our model with Gaussian distributions).

From Proposition EC.1, characterizing Firm 2’s optimal interview set reduces to analyzing the mono-
tonicity of F2(a).28 In light of this, we establish in Lemma EC.11 that under the Gumbel distribution,
the function F2(a) exhibits a structure analogous to that illustrated in Figure 3. Specifically, F2(a) is
increasing for a < a∗1 and unimodal for a > a∗1. By Proposition EC.1, this directly implies that Firm
2’s optimal interview set follows the same structure as in Proposition 4, namely, a union of a greedy
lower interval and a non-greedy upper interval.

Lemma EC.11. Let F2(a) =E[(v−s2)+ | a]Ψ(a | a∗
1, s1). For any s1, s2, and a∗

1, the function F2(a)

is increasing for a< a∗1 and unimodal for a> a∗1.29

We prove the above lemma through two claims. First, we show that F2(a) increases for a < a∗1,
where Ψ(a | a∗

1, s
∗
1) = 1. To establish this, it suffices to show that the family of Gumbel distributions

is increasing with respect to the location parameter in the sense of the likelihood ratio order (see
Fact EC.2 in Appendix EC.3.1).

Claim EC.9. Let v | a∼ Gumbel(a− γ,1). The family of distributions {G(v | a)}a∈R increases in a

in the sense of likelihood ratio order. That is, for any a′ >a, we have v | a′ ⪰lr v | a (see Definition EC.4
for the definition of likelihood ratio order).

28 Importantly, the shape of F2(a) does not depend on the score distribution H(a); rather, the score distribution only
affects how the threshold level θ is determined in Equation (EC.4).
29 Since this result holds for any s1 and s2, it also applies to the optimal hiring thresholds s∗1 and s∗2.
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Proof of Claim EC.9. It suffices to show that, for any a′ > a, the likelihood ratio g(v|a′)
g(v|a) increase in

v. We first observe that:

g(v | a′)
g(v | a)

= exp (a′ − a− exp(a′ − v)+ exp(a− v)) . (EC.161)

The above function is increasing in v if and only if a function q(v) = a′ − a− exp(a′ − v)+ exp(a− v)

is so. Taking derivative of q(v), we have q′(v) = exp(a′ − v)− exp(a− v) which is positive if and only
if a′ >a. Thus, the likelihood ratio g(v|a′)

g(v|a) increases in v, as desired. This completes the proof. □
Next, we show that the function F2(a) is unimodal for a> a∗1 in the following claim.

Claim EC.10. Let v | a∼ Gumbel(a− γ,1) and f(a) := E[(v− s2)+ | a]G(s1 | a). Then, for any s1
and s2, the function f(a) is unimodal.

Proof of Claim EC.10. We first compute E[(v− s2)+ | a] in the following.

E[(v− s2)+ | a] =
∫ ∞

s2

Ḡ(v | a)da=
∫ ∞

s2

(1− exp(− exp(a− γ− v))dv=

∫ exp(a−γ−s2)

0

1− exp(−u)
u

du.

(EC.162)
The first equality is by Fact EC.6 (see Appendix EC.3.9). The second equality is from (EC.160). The

last equality follows from a variable transformation u= exp(a− γ − v). By differentiating the above
equation with respect to a (and after simple algebra), we deduce that

dE[(v− s2)+ | a]
da

= Ḡ(s2|a). (EC.163)

Similarly, one can further show that

dG(s1 | a)
da

=−g(s1 | a). (EC.164)

Consequently, the derivative of f(a) is given by

f ′(a) = Ḡ(s2 | a)G(s1 | a)−E[(v− s2)+ | a]g(s1 | a) (EC.165)

= Ḡ(s2 | a)g(s1 | a)
(
G(s1 | a)
g(s1 | a)

−E[v− s2 | v− s2 ≥ 0, a]

)
(EC.166)

= Ḡ(s2 | a)g(s1 | a) (exp(−a+ γ+ s2)−E[v− s2 | v− s2 ≥ 0, a])︸ ︷︷ ︸
:=D(a)

(EC.167)

Because lima→−∞D(a)> 0 and lima→∞D(a)< 0, the intermediate value theorem implies that that
there exists a critical point a such that f ′(a) = 0. We claim that such critical point indeed must be
unique, which will imply that the function f(a) is uniomdal. To see why, note that f(a) = 0 if and
only if D(a) = 0, or equivalently

exp(−a+ γ+ s1) =E[v− s2 | v− s2 ≥ 0, a]. (EC.168)

The left-hand side is clearly a decreasing function in a. For the right-hand side, from Claim EC.9,
the random variable v | a is increasing in a in the sense of likelihood ratio order. Thus, by Theorem



ec40

1.C.6. of Shaked and Shanthikumar (2007), it follows that E[v−s2 | v−s2 ∈ S,a] increases in a for any
set S, implying that E[v− s2 | v− s2 ≥ 0, a] increases in a. Thus, a solution to D(a) = 0 must uniquely
exist. This completes the proof.

□

EC.6. Competition for Outstanding Candidates in Economics Academic
Job Market

In this appendix, we use multi-year data from the EJMR Economics Job Market Wiki (EJMR 2023)
to further support our structural results in Proposition 4, in particular the non-greedy structure of
the lower-ranked firm. The academic job market in economics serves as a representative example of
a setting where schools largely send out interview invitations and hiring offers in parallel, competing
for talent from the same pool of candidates. Using data from the economics academic job market, we
conduct a simple analysis of how institutions compete for outstanding candidates.

Data. Economics Job Market Rumors, also known as EJMR, is an anonymous internet discussion
board for economists on the academic job market (EJMR 2023). The website facilitates discussions
and information exchange among job market candidates, including an Economics Job Market Wiki
that tracks the status of the job market.

We focus solely on EJMR’s Economics Job Market Wiki. We downloaded publicly accessible online
data for the academic years 2012-2013 through 2023-2024. Our dataset includes the name of each
university, the names and affiliations of candidates invited for on-campus interviews, the list of job
offers extended, and the list of accepted job offers.

Data cleaning. For our analysis, we included only faculty openings at U.S. universities, excluding
research positions at banks as well as schools and candidates in Europe, Canada, Australia, China,
Brazil, and United Arab Emirates. By limiting the dataset to U.S. universities, we aimed to ensure a
more reliable comparison across institutions.

To ensure consistency in the dataset, we standardized university and candidate names. University
names were often recorded inconsistently, with abbreviations, variations, or misspellings. To address
this, we created a university dictionary that converts all recorded university names into their full,
standardized form. Similarly, candidate names were sometimes unclear or inconsistent across records.
To improve accuracy, we linked identical names and university affiliations, allowing for the precise
tracking of candidates throughout the job market process.

Finally, the dataset often contains missing information. We applied logical extrapolation to fill in
certain data points where direct reports were partially unavailable. Specifically, if a candidate’s name
appeared in the accepted offer list, we assumed that they had also received a on-campus interview and
a job offer. Likewise, if a candidate received job offers, we inferred that they had also participated in
on-campus interviews.
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School Tier U.S. News Rank
Tier 1 1-4
Tier 2 5-10
Tier 3 11-30

Table EC.2 Number schools in each tier based on (U.S. News & World Report 2024)

Finally, we removed data points associated with unknown universities or containing names with
numbers or unrecognizable characters were excluded from the dataset.

Data analysis and results. We use the U.S. News & World Report (2024) ranking of economics
programs in the U.S. to define five tiers of universities. The definition of tiers and the number of
schools in each tier are given in Table EC.2. Using this categorization of schools, we define outstanding
candidates as those who received at least three interviews from Tier 1 affiliation. Given that there
are four schools in Tier 1 (Table EC.2), we view these candidates as exceptional in terms of their
pre-interview features. In Table EC.3, we show the number of interviews that outstanding candidates
received from lower-tier schools. We find that lower-tier schools, in general, tend to interview fewer
outstanding candidates. For example, candidate C in the year 2019 (red-colored row in Table EC.3)
was interviewed by all of the schools in Tier 1 but by none in Tier 2.

At a high level, this pattern aligns with the structural result established in Proposition 4. Lower-tier
schools tend to bypass highly competitive outstanding candidates who secure interviews at top-tier
institutions. Our theoretical insight suggests that this behavior arises because the risk of interviewing
but ultimately losing these candidates to stronger competitors outweighs the potential benefit of the
outstanding candidate’s high match value. Notably, this empirical pattern contrasts with Vohra and
Yoder (2023), who theorize that firms across all tiers concurrently interview the very top candidates.

Limitations. This data exercise is provided for illustrative purposes and comes with several limita-
tions. First, the wiki is updated through self-reports and other anonymous contributions, leading to a
significant number of missing entries. As a result, the data may reflect reporting biases and be skewed
(e.g., the set of reported interviews might be incomplete). Second, while the economics job market is
largely a representative example of a labor market in which schools make parallel interview and hiring
offers, the academic market may not be perfectly vertically differentiated (For example, geographical
factors may make a lower tier school more attractive.) Finally, we recognize that EJMR has been
heavily criticized for toxic speech in its anonymous online forum (Ederer et al. 2024). We emphasize
that our focus is solely on its Economics Job Market Wiki, which compiles reports on the job market
process and outcomes. We acknowledge these limitations and therefore refrain from drawing definitive
conclusions or making recommendations based on this analysis. Rather, we view this exercise as moti-
vation for understanding the rationale behind a non-greedy interview structure of the lower-tier firm
in the labor market, as described in Proposition 4.
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Year Candidate ID # of interviews from
Tier 1 (out of 4)

# of interviews from
Tier 2 (out of 6)

# of interviews from
Tier 3 (out of 20)

2012 A 3 2 0
2012 B 3 2 0
2012 C 3 0 0
2014 A 3 1 1
2015 A 3 2 0
2015 B 3 1 4
2015 C 3 3 2
2015 D 3 1 1
2015 E 3 3 2
2015 F 4 3 3
2016 A 3 2 1
2017 A 3 3 1
2017 B 3 1 0
2017 C 3 5 1
2019 A 3 1 2
2019 B 3 3 1
2019 C 4 0 1
2021 A 3 2 0
2023 A 3 4 1

Table EC.3 Number of Interviews Received by Outstanding Candidates from Each Tier of Schools
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