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We study a dynamic model of interactions between a firm and job applicants to identify mechanisms that
drive long-term discrimination. In each round, the firm decides which applicants to hire, where the firm’s
ability to evaluate applicants is imperfect. Each applicant belongs to a group, and central to our model is
the idea that the firm becomes better at evaluating applicants from groups in which they have hired from
in the recent past. We establish the firm’s initial evaluation ability for each group to be a critical factor in
determining long-term outcomes. We show that there is a threshold for which if the firm’s initial evaluation
ability for the group is below the threshold, the group’s hiring rate decreases over time and eventually
goes to zero. If the group starts above the threshold, then the hiring rate stabilizes to a positive constant.
Therefore, even when two groups are identical in size and underlying skill distribution, a marginal difference
in the firm’s initial evaluation ability can lead to persistent disparities that exacerbate over time through
a feedback loop. Importantly, the dynamic nature of our model allows us to assess the long-term impact
of interventions, specifically, whether an improvement is sustained even after the intervention is lifted. In
this light, we show that drastic short-term interventions are more effective compared to milder long-term
interventions. Additionally, we show that smaller groups face inherent disadvantages, requiring a higher
initial evaluation ability to achieve a favorable long-term hiring outcome and experiencing lower hiring rates

even when they do.

1. Introduction
The application of machine learning algorithms in decision-making processes has expanded into
many high-stakes areas, including hiring, lending, healthcare, and criminal justice (Barocas et al.
2023)). Given the significant impact these decisions can have, important concerns have been raised
regarding possible harms due to algorithmic biases. For example, a machine learning tool used
by Amazon for recruiting was found to explicitly discriminate against women (Dastin 2022)), and
Obermeyer et al. (2019) showed that an algorithm used to allocate hospital resources were leading
to inadvertent discrimination against African American patients.

These examples and others have drawn significant attention to the problem of algorithmic

bias, which has inspired a growing literature on designing “fair” algorithms. Common algorithmic
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approaches include enforcing parity constraints across groups such as demographic parity (e.g.,
Zemel et al| (2013))), which mandates equal selection proportions across groups in decisions like
hiring or college admissions, or ensuring that algorithms are “blind” to sensitive attributes such as
race and gender (e.g., Dwork et al.| (2012))). Another prominent approach focuses on ensuring that
predictions are properly calibrated across groups (e.g., Hébert-Johnson et al.| (2018)).

These approaches define “fairness” in the context of a one-shot setting (e.g., a prediction prob-
lem). However, in reality, algorithmic systems operate within dynamic contexts, and the dynamics
can play a key role in perpetuating undesirable disparities. Consider the following examples.

1. Algorithmic hiring: A company’s algorithmic hiring tool is trained on historical data from
a workforce dominated by a specific group (e.g., a specific gender, graduates from a particular
college, etc.). The algorithm is more effective at evaluating applicants from this group, leading to
further inclination to hire from this majority group in the future.

2. Predictive policing: Predictive policing systems forecast crime in specific neighborhoods, lead-
ing to concentrated patrols in those areas. Crimes detected through heightened patrols are fed back
into the system, further reinforcing the designation of these neighborhoods as high-risk.

3. Loan denials: A bank uses an algorithm to predict the default risk of loan applicants, which
predicts that groups with lower socioeconomic status are at high-risk. Their loan applications are
denied, and as a result, these groups lose opportunities to invest or create businesses, perpetuating
their economic disadvantage.

These examples describe undesirable feedback loop mechanisms that can arise in several appli-
cations, and such issues cannot be formalized under static models. This suggests the need to study
dynamic models that can capture delayed impact and feedback effects. This is the motivation for
this paper, which focuses on the hiring application described in the first example.

Discrimination in hiring. Labor markets have consistently grappled with disparities that have
persisted over time. In the United States, both gender and racial pay gaps have not meaningfully
improved over the last couple of decadesﬂ Our paper proposes a dynamic model that formalizes a
feedback loop mechanism that explain the persistence of discrimination, and this model can then
be used to provide insights on how to mitigate discrimination.

We build upon the literature on statistical discrimination, which aim to explain how differences
in labor market outcomes between groups can arise even when firms act rationally in their hir-
ing process. Specifically, we extend the canonical static model of Phelps (1972) by incorporating
'The hourly earnings for black men were 73% of white men in both 1980 and 2015
(https://www.pewresearch.org/short-reads/2016,/07/01 /racial-gender-wage-gaps-persist-in-u-s-despite-some-

progress/). The gender pay gap was 80% in 2002 and 82% in 2022. (https://www.pewresearch.org/social-
trends/2023/03/01 /the-enduring-grip-of-the-gender-pay-gap/)
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dynamics inspired by machine learning practices. Our model studies a firm making hiring decisions
over time from applicants who are divided into groups. The key idea of our model is:

A firm is better at evaluating applicants from groups it has hired from in the recent past.
This concept is formalized through a noisy signal observed by the firm for each applicant: the
signal is less noisy for groups in which the firm has recently hired from. This dynamic reflects the
nature of machine learning systems, where more data enhances predictive accuracy, but older data
becomes stale and less relevant.

Under our model, we evaluate the long-term hiring rate for each group. Our main result is
that there are multiple distinct long-term outcomes that can arise, and which one emerges simply
depends on the firm’s initial evaluation ability for the group. That is, two identical groups may
converge to completely different hiring rates if the firm initially had a slightly better ability to
evaluate applicants from one group over the other. The resulting dynamics illustrate that historical
disadvantages can persist and exacerbate over time through a feedback loop, leading to long-term
disparities.

Our dynamic model also allows us to formalize the idea of interventions that are successful in
the long term. Specifically, we say that an intervention that aims to help a disadvantaged group is
successful in the long term if, compared to pre-intervention, the outcomes of the group improves
after the intervention is lifted. For example, an intervention that enforces a temporary boost in
the hiring rate of a group may improve outcomes in the short run, but this may not persist once
the intervention is lifted. Our model and results suggest that a successful intervention in the long
term should be drastic, even if it is in place for a short period of time.

This paper helps to bridge the literatures of statistical discrimination and algorithmic fairness.
We extend classical models of statistical discrimination by introducing dynamics that shed light
on how disparities evolve over time. On the algorithmic fairness front, our paper provides a frame-
work that formalizes how algorithmic performance shifts with data availability influenced by past
decisions. This framework can be used to evaluate long-term outcomes, which can be applied to
settings beyond the hiring context.

Model summary. We introduce a dynamic model of a selective labor market composed of a
firm and applicants, where applicants are clustered into “groups” (based on gender, race, college,
etc.). For convenience, this paper uses terminology related to the labor market (a firm that hires
applicants), but the model also readily applies to an admissions problem (e.g., a college that admits
applicants). Each applicant has a true “skill”, a scalar value, and the firm hires all applicants
whose skill is expected to be above a fixed threshold. The firm’s evaluation ability is imperfect
and dependent on the observation of a noisy signal of each applicant’s skill, where the variance of

the noise is group-specific and dependent on past decisions. Specifically, we assume that the noise
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variance of the signal is a decreasing function of the number of hires from that group in the previous
time step. This dynamic models the idea that a firm’s ability to evaluate applicants from a group
improves with recent hiring from that group, as past hires provide both performance feedback and
contribute to future hiring decisions. This feedback loop, however, relies on recent hires, as older
data and employee turnover diminish its impact over time. Under these dynamics, we evaluate how
the hiring rate (percentage of applicants hired) for a group evolves over time. If the hiring rate
eventually converges, we call this a steady state. We call an “active” steady state one where the
corresponding hiring rate is positive, which implies that a constant fraction of applicants from that

group are consistently hired. An “inactive” steady state is one where the hiring rate is zero.

1.1. Summary of Results
We now summarize our main results.

Convergence to two steady states. We show that there are exactly two possible steady state
outcomes that a group can converge to, where one of them is active and the other is inactive. We
characterize which of these steady states arise as a simple threshold on the initial noise variance.
If the initial noise variance is below the threshold, the group converges to the active state, and
otherwise, they converge to the inactive state. Hence, two groups that start with a small difference
in their initial noise variances may converge to two completely different long-term hiring outcomes,
even if their underlying skill distributions are identical.

Group size. Next, we show that groups of smaller sizes are fundamentally disadvantaged in two
ways. First, the noise variance threshold needed to converge to the active steady state is smaller
for the smaller group. Second, even if two groups are both in the active steady state, the percentage
of applicants hired (which normalizes for group size) will be lower for the smaller group.

Interventions. For a group to converge to the active steady state, the noise variance must be
reduced below a critical threshold. Once this threshold is crossed, the group benefits from a self-
reinforcing feedback loop that sustains improved hiring outcomes even after the intervention ends.
Thus, a sufficiently drastic intervention that substantially lowers the noise variance can lead to
long-term improvements, even once the intervention is lifted. In contrast, milder interventions
that do not achieve this threshold have only temporary effects and fail to produce lasting change.
Notably, we show that enforcing a specific form of demographic parity (equalizing hiring rates
across groups) is always sufficient to trigger convergence to the favorable steady state, if one
exists. Specifically, the equalized hiring rate must match that of a group in the active state. If this
intervention is unsuccessful, this serves as evidence that the favorable state does not exist, and

hence no intervention that decreases the noise variance can be successful.
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Competition across groups. We extend our model to one where two groups are competing for
a limited number of positions at a single firm, and we characterize which steady states can arise
under this model. We first show that if the initial hiring rate for one group is sufficiently small,
the resulting steady state will be inactive for that group, and the firm will eventually exclusively
hire from the other group. We show that such an exclusive steady state can arise even when initial
hiring rates are equal, under uneven group sizes. When the total hiring capacity is small enough,
then the smaller group will converge to the inactive steady state even if it started with the same
hiring rate as the other group. On the positive side, we show that if the total capacity is large
enough and the initial hiring rates have a small discrepancy, the system will converge to an active
steady state for both groups.

We consider an extension where the underlying population size increases, which intensifies com-
petition. We show that this exacerbates disparities: the group with higher evaluation ability secures
a larger share of hires as the population grows.

Sitmulating a practical algorithmic hiring system. To complement our theoretical analysis, we
conduct a simulation study in which a firm deploys a realistic machine learning (ML) based hiring
system over time. In the simulation, each applicant has a feature vector, and their skill is a linear
function of the features. The firm uses past hiring data to fit a predictor of their skill to make hiring
decisions. The simulation results validate several key qualitative features of our model: the existence
of two distinct steady states (active and inactive), the critical role of initial evaluation ability in
determining long-run outcomes, and the disadvantage faced by smaller populations. Specifically,
we show that the hiring rate converges either to zero or to a positive constant depending on the
firm’s initial estimate quality, mirroring the bifurcation behavior predicted in our theoretical model.
These results highlight that the feedback loop dynamics we model are not merely a theoretical
artifact, but persist under more realistic settings with noisy prediction and limited feedback.

Extensions. We consider several modeling extensions to check the robustness of our main results.
We consider an extension where applicants can improve their skills by exerting effort. Exerting
effort incurs a cost, and applicants exert the effort level that maximizes the chance they are hired
minus the effort cost. We show that the results regarding the existence and convergence to two
steady states continue to hold in this extension. Next, we also consider an extension of the model
in which the noise variance can depend on more than one previous time step, as well as another
variant where we impose a cap on the maximum value that the noise variance can take. Lastly,
we consider an alternative noise update rule which is motivated by a model wherein which a firm
observes multiple features for each applicant, and the firm aims to learn which feature is informative

of the applicant’s skill. We show that our main results hold under these extensions.
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1.2. Implications

Persistence of historical discrimination. Our main result is that there are distinct steady states
that are associated with drastically different hiring outcomes, and the outcome that arises depends
critically on the firm’s initial evaluation ability for each group. This mechanism helps explain
real-world patterns, such as the persistent under-representation of certain demographic groups in
leadership roles (Ospina and Foldy 2009, Krivkovich et al.[2024, Nagpaul |2024), or the continued
dominance of graduates from specific elite institutions in competitive industries (Gerber and Che-
ung 2008, Witteveen and Attewell 2017). It highlights how historical disadvantages, reflected in
initial evaluation disparities, can persist and even worsen over time, leading to entrenched long-term
inequalities in hiring outcomes without any explicit bias in the firm’s decision-making process.

Need for drastic interventions. Consider an intervention whose goal is to help a disadvantaged
group. For example, an intervention may increase the number of applicants hired from the group, or
a firm may spend more effort on evaluating the applicants to decrease the noise (e.g., by conducting
more interviews). We say that an intervention is successful if the group converges to the active
steady state. Our convergence result shows that a successful intervention must cause the noise
variance of that group to fall below a critical threshold. This highlights the importance of drastic
interventions. If an intervention is able to reduce a group’s noise below the critical threshold, the
group will naturally converge to the active state, maintaining its improved status even after the
intervention ends. In contrast, mild interventions, even those in place for a long time, that do not
lower the noise variance below the threshold are ineffective in the long term. Such interventions
might temporarily boost hiring while they are in effect, but fail to create the self-reinforcing
dynamics necessary for sustained improvement, causing the group to fall back to the inactive state
when the intervention is lifted.

Our results can provide insight into the (in)effectiveness of real-world interventions. For example,
the recent United States Supreme Court decision in Students for Fair Admissions v. Harvard in
2023 banned the use of affirmative action in college admissions, effectively removing an intervention
that had been in place for decades. Preliminary post-ban dataﬂ indicate that Black enrollment
has declined at three-quarters of colleges, with varying impacts across institutions. Applying our
framework to this context, one possible interpretation is that affirmative action, while impactful
during its implementation, may not have led to a state where an improvement can be naturally
sustained. Of course, we acknowledge that this is a simplification of a highly complex issue, and

our model captures one of many aspects of the broader systemic forces at play.

2 https://edreformnow.org/2024/09/09/tracking-the-impact-of-the-sffa-decision-on-college-admissions/
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Smaller groups are inherently disadvantaged. Our model reveals that smaller groups face inher-
ent disadvantages in achieving favorable long-term hiring outcomes. Specifically, smaller groups
require a higher initial evaluation ability to converge to the active steady state, making them more
vulnerable to falling into the inactive (zero-hiring) state. Moreover, even when both large and small
groups achieve active steady states, the hiring rate for the smaller group remains lower due to the
weaker feedback loop generated by fewer hires. This stands in contrast to the common perception
that parity in hiring rates across groups is the desirable or “fair” outcome—a notion often formal-
ized through demographic parity constraints in the algorithmic fairness literature (e.g., |Calders
and Verwer| (2010), [Edwards and Storkey| (2015), [Zafar et al.| (2017)), Agarwal et al. (2018), [Zemel
et al| (2013)). Our results suggest that such parity may not naturally emerge even in the absence

of bias, when group sizes differ.

1.3. Related Literature

As mentioned, our paper builds upon the literature on statistical discrimination. We describe the
most relevant works from this literature, and we refer the reader to the excellent surveys of |[Fang
and Moro (2011), Lang and Spitzer| (2020)), and |Onuchic| (2022) for a comprehensive literature
review.

Multi-armed bandit models. Conceptually, our paper is closest related to recent works that study
discrimination using multi-armed bandit models (Li et al.[[2020, Bai et al. 2022, Komiyama and
Noda}[2024]). These models capture how a firm’s evaluations improve as a function of past hiring,
which aligns with our central premise that hiring from a group enhances the firm’s ability to assess
future applicants from that group. A key distinction is our work is in treatment of past data:
bandit models assume that all past data remains relevant indefinitely, and we assume that only
recent data informs the firm’s current evaluation ability. In our model, the firm must consistently
hire from a group to maintain a low noise level when evaluating its applicants. This difference
yields distinct insights. Specifically, our model differentiates between the timing and intensity of
interventions: hiring 100 applicants in one round is not equivalent to hiring one applicant each
over 100 rounds. In contrast, the cumulative nature of learning in bandit models makes these two
interventions equivalent. Moreover, our framework highlights that reducing the noise variance is
the key to achieving lasting improvement. This can be achieved not only through hiring more
individuals from a group, but also through more accurate evaluations (e.g., by spending additional
effort during interviews).

Relation to Phelps Model. Next, our paper is also closely related to papers that study the impact
of heterogeneity in information quality as a mechanism for statistical discrimination, as in the

seminal work of |Phelps| (1972), and extensions (e.g., Aigner and Cain (1977), Lundberg and Startz
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(1983)). The model in our paper can be seen as a dynamic generalization of Phelps (1972); our
work relies on the same source of discrimination (heterogeneous information quality), but we focus
on studying how discrimination evolves over time. Other than being a dynamic model, a second
departure of our work from the Phelps model is that we assume the firm makes binary hiring
decisions, rather than wage decisions. This is a crucial and necessary feature of our model, since
the idea that “firms get better in hiring from those they have hired from before” is only applicable
when considering hiring decisions (and not when the firm hires everybody and only makes wage
decisions). Studying binary decisions is the natural formulation of the problem from a machine
learning perspective, since this corresponds to the ubiquitous classification problem.

Cornell and Welch| (1996)) studies a variation of [Phelps| (1972) that studies information hetero-
geneity across groups of applicants, but they consider hiring decisions rather than wage decisions
(as in this paper). They assume that for each applicant, a firm receives a certain number of inde-
pendent signals of quality, where the number of signals they receive is a function of their group.
They assume the firm only hires one applicant, and they show that the hired applicant is more
likely to come from the group in which the firm has more information about, and this probability
approaches 1 when the number of applicants goes to infinity. Under multiple generations, they cal-
culate the expected duration until the first time the hired applicant comes from the disadvantaged
group. Although |Cornell and Welch! (1996) comments on the persistence of discrimination over
time, they do not model the dynamics of how the underlying hiring mechanism evolves over time,
which this paper focuses on.

More recently, Emelianov et al.| (2022)) studies a static model where the variance of the noise in
the applicant’s signal differ across groups. They study two variants in which the decision maker
either knows or do not know the variance, and show that both can lead to discrimination. They
also consider interventions similar to demographic parity and analyze its effects. Our paper can be
seen as a dynamic generalization of this work.

Relation to Arrow Model. Our paper is also related to the seminal model of Arrow| (1973), which
introduces a model where groups are ex-ante identical, applicants make costly skill investment
decisions, and firms provide higher wages to those with the investments.

The model is shown to have multiple equilibria, and hence, discrimination is explained as different
groups arriving at distinct equilibria (called “coordination failure”). This formalizes the idea of
“self-fulfilling stereotypes” — if a firm believes that a group will not make skill investments, the
group, correspondingly, will not be incentivized to do so.

At a high level, our results have a similar flavor to that of the Arrow model. Specifically, we
show that our model exhibits multiple long-term steady states, and this can be thought of as

analogous to multiple equilibria in the Arrow model. The main distinction of our work is the
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underlying mechanism of discrimination; importantly, our work does not rely on applicants to make
any decisions. The results of Arrow (and extensions such as Coate and Loury (1993), Moro and
Norman| (2004)), Levin (2009), etc.) rely on coordination failure as the source of discrimination,
where applicants from different groups make different skill investment decisions. Contrastingly, our
work shows that a similar phenomenon of two ex-ante identical groups ending up in two distinct
outcomes can occur, without relying on any decisions made by applicants. Another distinction is
the difference in the technical definition of a “steady state” (this paper) and an “equilibrium”
(Arrow model), though conceptually we think of these as similar ideas.

Dynamic models. There are papers that study dynamic models of statistical discrimination,
where the dynamics considered by these papers model a fundamentally different idea than the
dynamics that we study. Blume| (2006) and [Levin| (2009) develop dynamic models based on |Arrow
(1973) where firms maintain beliefs over the worker’s skill, which results from costly investments.
Fryer Jr| (2007) and Bardhi et al. (2020) study the dynamics of worker’s employment over their
career. Bolte et al.[ (2020) develop a dynamic referral-based hiring model where homophily induces
persistent disparities.

Fairness in machine learning. Another closely related area is the recent but large literature on
fairness in machine learning; see Barocas et al.| (2023),|Chouldechova and Roth| (2020), and Mehrabi
et al.| (2021) for an overview of this literature. Our model studies a firm’s decision of whether to
hire an applicant or not, which is akin to the classification problem in machine learning. This is
in contrast to most of the models of statistical discrimination, where the decision is related to
setting wages. The “classical” definitions of fairness in machine learning are often motivated by the
hiring or school admissions applications (e.g., Barocas et al.| (2023),|Chouldechova and Roth (2020,
Mehrabi et al| (2021))). Within our model, one can view such fairness definitions as a short-term
intervention. There is also a collection of papers that bring up critiques of the classical fairness
definitions (e.g.,|Bao et al.|(2021)), Kasy and Abebe|(2021)), Corbett-Davies et al.| (2023))) as well as
works that posit economic-driven frameworks for fair decision-making (e.g.,|Kleinberg et al. (2018]),
Chohlas-Wood et al. (2021))) — our work has a similar motivation to this stream of literature.

More directly related to our work are papers that study a dynamic setting and evaluate long-
term outcomes. Liu et al.| (2018]) show that even in a one-step feedback model, imposing a fairness
constraint does not necessarily lead to an improvement and can even potentially cause harm.
Hashimoto et al.| (2018) study a dynamic model in which those who experience a high error are
likely to leave the system, and they show that repeated empirical risk minimization can lead to
exacerbated disparities over time. Liu et al.| (2020)) study a dynamic model where users invest effort
as a best response to the current system, where they focus on how the lack of realizability can

lead to an unfair equilibrium outcome. Fu et al.| (2022) study how imposing an equal opportunity
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fairness constraint can reduce a firm’s incentive to invest in better predictions, which can make all
groups worse off.

Algorithmic hiring and operations. Our paper also relates to the growing operations literature
that study models and algorithms for hiring or school admissions. (Garg et al.| (2020) study the
impact of using standardized tests for college admissions when different groups of applicants have
unequal access to the test. They extend the model of [Phelps (1972) to multiple features, testing
costs, and competition across schools. |Farajollahzadeh et al.| (2025) study a two-stage hiring model
with information asymmetry across groups, where they show that the Rooney Rule intervention
may fail to improve hiring outcomes, especially when firms compete to hire from a common pool.
Several other papers study the effectiveness of interventions or mechanisms for hiring (Kleinberg
and Raghavan| [2018) and school admissions (Faenza et al.| 2020, 2022). A line of work studies
the impact of algorithmic monoculture, where multiple firms use a common algorithm to score
applicants to make interview or hiring decisions (Kleinberg and Raghavan|[2021, Peng and Garg
2024}, Baek et al.2025)). Aminian et al.| (2023)) develop algorithms for equitable hiring in a sequential
setting, and they show that when signals can be biased, incorporating fairness constraints can
improve long-term outcomes. Salem and Gupta (2023) develop algorithms for sequential hiring
where information about applicants are given as a partial order, modeling the idea that not all
applicants are directly comparable. |Purohit et al.| (2019) and Epstein and Ma| (2022) study the
sequential hiring problem under uncertainty in offer acceptances.

The rest of the paper proceeds as follows. Section [2|presents our model. Section[3|characterizes the
learning outcome and the impact of the initial noise and the group size on it as well as interventions.
In Section 4] we extend our model to one where two groups compete for a limited number of spots.
Section [5| contains simulations that mimic an ML-based system that makes hiring decisions over
time. Section [6] provides several extensions and robustness checks for our main results, including an
extension of the model where applicants can exert effort. Section [7] concludes, while the Appendix

presents the omitted proofs from the text.

2. Model

We consider a multi-period labor market of a firm that hires from an applicant pool. Each time
period t =1,2,... represents a different pool of applicants, whereas the firm stays the same across
periods. For example, time periods can be years, and the applicant pool can be those who are
graduating college that year. The applicants are divided into mutually exclusive groups (e.g.,
graduates from different colleges), and the firm interacts with each group separately. We describe
the dynamics of the interactions between the firm and one group of applicants. In Section [ we

consider a variant of the model where two groups are competing for a limited number of positions.



Baek and Makhdoumi: The Feedback Loop of Statistical Discrimination 1

A group at one time period is represented by a continuum of applicants with a total mass of
P > 0, which we refer to as the group size. Each applicant has a scalar skill, and the distribution of
the skill is A/(0,1). Let S; be a random variable denoting the skill of an applicant drawn at random
at time ¢.

Observation and hiring rule. At time ¢, the firm receives an observation O, for each applicant,
which represents a noisy signal of the applicant’s true skill S;. At each time period ¢, there is
a noise variance o? associated with the group, where a lower noise variance corresponds to a
higher evaluation ability by the firm. The firm observes O, = S; + ¢; where ¢, ~ N (0,0?2) is drawn
independently for each applicant. The firm then computes their belief on the expected value of the
applicant’s skill, E[S; | O;], which we refer to as the inferred skill. We assume the firm is aware of
both the prior distribution of skill as well as the noise variance, hence the inferred skill has the
form:

O;
E[S; | O] = —.
15 10] 1+ 07

Then, the firm hires the applicant if and only if E[S, | O;] > 7, where 7 > 0 is an exogenous
parameter. We define the hiring rate at time ¢ to be ¢, = Pr(E[S,; | O;] > 7), the percentage of
applicants who are hired.

Noise dynamics. We assume that the noise variance for the next time step updates as
1
Ot = @-a) (1)
for some b € R,. That is, the variance is inversely related to the mass of applicants hired at the
previous time step, P - ¢q;. We discuss this modeling assumption in Section [2.1

Initialization and steady states. Given parameters P and b, a process is initialized with the
initial hiring rate o € [0, 1], which defines the noise variance at the first time step: o =1/(Pgqp)".
If the hiring rate for a group converges to a limit, lim;_, .. ¢; = g0, then we say that ¢, is a steady
state. We say that q., is a stable steady state if there exists an € > 0 such that if gy € [¢o — €, ¢oo + €],
the process converges to g... Otherwise, it is an unstable steady state. We say that g, is an active
steady state if ¢, > 0, and we say that it is inactive if ¢, =0.

REMARK 1 (MULTIPLE GROUPS). The model above specifies the dynamics of a single group. If
there are multiple groups, we assume that a firm interacts with each group separately, and hence,
the above process runs independently for each group. Since the firm simply hires everyone whose
expected skill is above the threshold 7, there is no interaction or competition between groups. In
Section [4] we consider an extension of this model where two groups are competing for a limited

number of positions at a single firm, which captures the interaction between two groups.



Baek and Makhdoumi: The Feedback Loop of Statistical Discrimination

12

2.1. Discussion of Dynamics

The dynamics on the noise variance of the observation represent the salient modeling feature of
our work. The noise variance decreasing in the previous mass of hires formalizes the idea that a
firm is better at evaluating applicants from a group if they have hired more from that group in
the past. We describe two motivating reasons for this modeling decision. First, once an applicant
is hired and becomes an employee, the firm observes their performance and learns about their true
skill. Therefore, the past hires serve as labeled data points that the firm can learn from to evaluate
future applicants (as is also done in [Li et al.| (2020) and [Komiyama and Noda| (2024)). Second,
past hires become employees of the firm who often take part in the hiring process, and they will
be better at evaluating those who have a similar background to them (e.g., alumni of a particular
school have a better sense of what a “good” GPA from that school is). Both of these mechanisms
lead to the phenomenon that the firm’s ability to evaluate applicants improves in the number of
hires from their group.

Relatedly, another key assumption of our model is that the noise variance is a function of the
hiring decisions from a finite number of previous time steps, rather than all previous time steps.
Note that for both of the aforementioned motivating reasons, hiring an applicant will not improve
the firm’s evaluation ability indefinitely. This is because the population and the set of desirable
skills are constantly changing, and hence observations from a long time ago are not predictive about
today’s applicants. Moreover, employees who take part in the hiring process do not stay at the firm
forever. For simplicity, we model the noise variance as a function of the number of applicants hired
from that group in the immediately previous time step. In Section [6.2] we consider an extension
where we let the variance be a function of more than one previous round, and we show that the
same results hold.

With respect to the exact functional form of the noise variance update, Eq. is motivated by
the idea that the variance of statistical estimators scales at a rate of O(1/n) (e.g., central limit
theorem), where n is the number of samples. In Section |5, we show that our findings continue to
hold more broadly by conducting a simulation study that mimics a practical hiring system and
avoids making any explicit modeling assumptions about the noise update rule. In Subsection
we consider a different functional form for the noise variance update rule, which is motivated by
by a model wherein which a firm observes multiple features for each applicant,and the firm aims
to learn which feature is informative of the applicant’s skill. We show that our findings are robust

and hold under this extension.

3. Steady State Convergence Analysis
In this section, we characterize the set of stable steady states, as well as which steady state arises

as a function of the initial state.
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At time ¢, given that the inferred skill is given by E[S; | O;] = O;/(1 + o7), the distribution of
inferred skill over the population is given by
B[S, | O] ~ N (0, —
t t ’ 1 =+ Ut2 .

Therefore, the proportion of applicants hired at time ¢t is

q(t;0?) £ Pr (./\f (0,1) >7/1+ Jf) )

We characterize the dynamics via a function f which maps the noise variance at one step, o2, to
the noise variance at the next step, o7, . Specifically, let us define the function

. A

x> f(z; PyT) = m

for x > 0 that captures the mapping from a noise variance to the noise variance at the next time

step. This function depends on the group size P and the threshold 7. The map f represents one step

of the process, and hence the entire process is fully specified by repeatedly applying the function

f. Hence, the function f specifying the one-step dynamics can be written as
1

f(z; PyT) = 59
(P-(1-o(rvTT2))

where ®(z) is the cumulative distribution function of the standard normal distribution.

If f(o% P,7) > o2, then the noise variance at the next time step is worse (larger) than the current
time step. Conversely, if f(o?; P,7) < o2, then the noise variance at the next time step is better
(smaller) than the current time step. Therefore, understanding the convergence dynamics reduces
to understanding how the function f(x; P,7) compares to the function y = z. Figure (1| plots an
example of the function f(x;P,7) as well as y = x. The next lemma characterizes the number of

intersections of f(z; P,7) and y = x.

LEMMA 1. For any P and 7, the function f(x; P,T) for x >0 intersects with y =x in at most

two points.

We note that the function f(x; P, 7) is not convex in z, which would have been a sufficient condition
to prove the above lemma. To prove this result, we equivalently show that the function v(z) =
x/f(x; P,T) intersects the line y =1 at most twice, which we establish by showing that v(x) has
at most one stationary point. The proof of this result (and all other results) can be found in the
appendix.

Using this, our main result characterizes the learning dynamics and the set of stable steady

states.
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THEOREM 1. For any given P, there exists T € R, such that:

o If T>T, then there exists only one stable steady state which is inactive.

o If T < T, then there exists exactly one active stable steady state and one inactive steady state.
Furthermore, for a given T < T, there exists a variance threshold 52 such that any noise variance
0? < 5% converges to the active stable steady state, and any noise variance o > 6% converges to the

inactive state.

Noise variance (02)

Figure 1 Function f(z; P,7) for P=12, =1, and b= 1. The first intersection of f with y =z represents the
active state, marked as o2. The second intersection corresponds to the threshold 52 in Theorem 1} if the initial
noise variance is below this value, it converges to the active state, whereas if it is above the threshold, it

converges to the inactive state.

Theorem [1| characterizes the set of steady states as well as the conditions on convergence to
each one. This result establishes that the inactive steady state always exists, and there is at most
one active stable steady state. Since these are unique, from now on, we will refer to these in the
shortened form as the inactive state and the active state, where the latter may not exist.

We let 6%(P,7) denote the variance threshold corresponding to the second bullet of Theorem
where we define %(P,7) = 0 if the active state does not exist. In Figure [1| the larger intersection
of f(x; P,7) and y = x is ¢%(P,7). Similarly, we let o?(P,7) denote the noise variance at the active
state, where we define o?(P,7) = oo if the active state does not exist. In Figure , the smaller
intersection of f(z; P,7) and y =z is o2(P, 7). With this notation in hand, it is worth highlighting
the dynamics of the noise variance evolution. For any initial noise variance o? < g2(P,7), the noise
variance increases over time and converges to the active state o2(P,7). For any noise variance

o? € (c2(P,7),5%(P, 7)), the noise variance decreases over time and again converges to the active
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state o2(P,7). In contrast, for any noise variance o > g%(P, 7), the noise variance increases over
time and converges to the inactive state. We note that the second intersection, (P,7) is an
additional active steady state, but it is not stable.

We now describe several practical implications and corollaries of Theorem

3.1. Impact of the Initial Noise Variance

Taking 7 < 7 as fixed, Theorem [I| formalizes the importance of the initial noise variance. The even-
tual steady state of a group is simply determined by the threshold 62, where a group will converge
to the active state if and only if their initial noise variance is below the threshold. Then, comparing
two otherwise identical groups, even a small difference in their initial states (e.g., just above and
below 62) can lead to two completely different long-term prospects, despite their underlying true
skill distribution being identical. Put differently, a group starting with even a small disadvantage

can lead to greatly exacerbated disparities in the long run.

3.2. Impact of Group Size
Next, we evaluate the impact of the group size on the resulting steady state. We show that belonging

to a group with a smaller size can be disadvantageous in two ways.

ProposITION 1. Fiz 7> 0.
e The noise variance threshold to converge to the active state, *(P,T), is increasing in P.

e The proportion hired at the active steady state, q(7,0%(P, 7)) € [0,1], is increasing in P.

First, the threshold that the noise variance needs to be below in order to converge to the active
state is higher for a larger group. Therefore, even if two groups start with the same noise variance,
it may be that the larger group converges to the active state while the smaller group converges to
the inactive state. Second, even if two groups are in the active state, the proportion of those who

are hired (which normalizes for group size) is smaller for the smaller group.

3.3. Interventions: Need for Drastic Measures
It is natural to consider interventions that help a group converge to the active state. Theorem
specifies what this intervention needs to achieve: the noise variance associated with evaluating that
group must fall below a critical threshold (P, 7). This threshold marks the point at which the
feedback loop begins to positively reinforce itself, enabling sustained improvement in the firm’s
evaluation accuracy and long-term outcomes for the group. Crucially, interventions that fail to
reduce the noise variance sufficiently will only have a temporary impact, as the system will revert
to the inactive state once the intervention is removed.

The exact nature of the intervention can take many forms. For example, one can increase the
number of applicants hired at one time step to decrease the noise in the next time step, as formalized

in the next result.
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PROPOSITION 2. If 62(P,7) < 0o, then there exists q € [0,1) such that the hiring q proportion of

applicants from this group in a single round results in the process converging to the active state.

Another possible approach is to directly decrease the noise by improving the evaluation process
(e.g., by spending more effort on evaluation, conducting more interviews, etc.).

Regardless of the type of intervention, our results highlight the importance of drastic interven-
tions. By significantly increasing the firm’s hiring from a disadvantaged group or directly improving
its evaluation process, such interventions can ensure that the noise variance crosses the critical
threshold. Once this is achieved, the group can naturally converge to the active state, maintaining
its improved status even after the intervention ends. In contrast, mild interventions, even those in
place for a long time, that do not lower the noise variance below the threshold are ineffective in
the long run. Such interventions might temporarily boost hiring while they are in effect but fail
to create the self-reinforcing dynamics necessary for sustained improvement, causing the group to

fall back to the inactive state when the intervention is lifted.

3.3.1. Demographic parity is sufficient. It is natural to ask: how drastic does an interven-
tion have to be? We show that imposing hiring rates to be equal across groups, where the hiring
rate matches that of a group in the active state, is a sufficient intervention. It will either induce
convergence to the active state, or it may not, in which case this serves as evidence that there is
no active state.

Specifically, suppose there are two groups, A and B, where group A is in the active steady state
and group B is not. We consider the intervention of increasing the hiring rate of group B to match
that of group A. Specifically, let ¢.(A) € [0, 1] be the hiring rate corresponding to the active steady
state for group A. Then, we show that hiring ¢.(A) proportion of group B applicants will lead

group B to the active state, if it exists.

PROPOSITION 3. Suppose at time t, the hiring rate of group B is set to be q.(A); i.e., ¢;(B) =
q.(A). Then, if the active state for group B exists, then o} ,(B) < *(B), and group B will converge

to the active state.

Proposition [3] does not say that group B will always converge to an active steady state, as this
may not exist for group B (which would occur if P(B) is too small). However, if demographic
parity does not work, this serves as evidence that the active steady state does not exist, and hence
no intervention that decreases the noise variance can be successful. That is, even if one were to
further increase the hiring rate for group B beyond demographic parity, it would not converge to
an active state.

We note that setting explicit quotas for demographic groups is often not legal; for example, such

quotas are prohibited in the United States. However, we do not interpret demographic parity as
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necessarily imposing such quotas. Rather, we view demographic parity as a benchmark: a prop-
erty that firms may aim to achieve through broader recruitment efforts or structural changes to
their hiring process. For instance, a firm might increase representation by expanding its recruiting
pipeline to include different institutions or by partnering with organizations that reach underrep-
resented groups. Our result should be interpreted in this spirit: if a firm is able to increase hiring
rates to satisfy demographic parity, then this is always sufficient to induce convergence to the

favorable steady state, if one exists.

4. Competition Across Groups

So far we have assumed that the firm hires all applicants whose inferred skill is higher than T,
where 7> 0 is an exogenous parameter. We now consider a variant of the model with competition
across groups. We assume the firm has a total hiring capacity of C' > 0, and they hire the top C
mass of applicants across the groups with the highest inferred qualities. Given two groups A and
B, this model can equivalently be stated as the firm selecting a time-dependent threshold 7; such
that

P(A)Pr(E[S:(A) |O(A)] > 1) + P(B) Pr(E[S(B) | O(B)] > 1) =C,

and then hires everyone whose inferred skill is larger than 7. We normalize the size of group A
to be 1, and that group A is the smaller group: 1 = P(A) < P(B). We assume that the initial
condition, (qy(A),qo(B)), satisfies P(A)qo(A) + P(B)qo(B)=C.

We first show that the hiring rates move monotonically and converge to a limit.

PROPOSITION 4. For any t and any group g, if a(9) > qr1(9), then g11(9) > ai(9)- If ar(g) <

4t-1(9), then q1(9) < @ (9). If 4:(9) = ¢1-1(9), then qi41(9) = q:(9). Lastly, ¢:(g) converges to some
limit ¢-(g) >0 as t — oco.

4.1. Characterizing Steady States
We say that (¢w(A),¢e0(B)) is an inclusive steady state if both g (A) >0 and ¢ (B) > 0. If one
of 4o (A), ¢oo (B) is positive and the other is 0, then we say that the steady state is exclusive.

We first characterize two conditions that result in an exclusive steady state. The first condition

is that the initial hiring rate for one group is sufficiently small.

THEOREM 2. For any group g and any C € (0,1/2), there exists a ¢ >0 such that if qo(g) < ¢,
then lim; .. ¢;(g) = 0.

Theorem [2] implies that when the discrepancy between initial hiring rates is sufficiently large
and one group initially has a small hiring rate, then the firm will eventually exclusively hire from

the other group. Note that this result does not depend on the size of the groups; the hiring rate
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for the larger group can go to 0 if their initial hiring rate is sufficiently small. Theorem [2| implies
that as long as C' < 1/2, there always exist initial conditions that result in ¢..(A) =0, and there
exist initial conditions that result in g, (B)=0.

Next, we show that even if the initial discrepancy in hiring rates is small, an exclusive steady

state arises when the total hiring capacity C is sufficiently small.

THEOREM 3. Suppose either of the following two conditions hold:
e qo(A) <q(B), or
* ¢o(A) =qo(B) and P(A) < P(B).
Then, there exists a C' such that if C < C’, ¢,(A) =0 and ¢,(B) = C as t — oco.

Theorem [3| specifies two conditions in which the hiring rate of group A goes to 0 when C' is
sufficiently small. The first condition is when the initial hiring rate of group A is smaller than
group B. The second condition is when the initial hiring rates are the same, but the size of group
A is strictly smaller than that of group B. Therefore, both the initial hiring rate and the group
size plays a crucial role in the system dynamics.

Note that the capacity C is comparable to the parameter 7 in the original model, which both
represents the “selectivity” of the firm. Specifically, a larger value of 7 decreases the hiring rate,
which is analogous to a larger value of C. Therefore, Theorem [3]is analogous to Theorem [}, which
states that if 7 is large enough, there is no active state and the group converges to an inactive
state. In the competition model, when C' is small enough, the hiring rate for the disadvantaged
group goes to 0.

On the positive side, we show that an inclusive steady state can arise when C' is large enough,
and the initial discrepancy in hiring rates is small. We first show this when group sizes are equal,

where there is an inclusive steady state where the hiring rate for both groups is exactly C/2.

THEOREM 4. Suppose P(A) = P(B)=1. There exists C' <1 such that if C € (C',1), there exists
0 >0 such that if |go(A) — qo(B)| <, then guo(A) = ¢ (B) =C/2.

Next, we show a similar result when the group sizes differ. We show that an inclusive steady state
arises when group sizes slightly differ and the initial discrepancy in hiring rates is small. However,
this inclusive steady state does not have equal hiring rates — the hiring rate at the steady state is

smaller for the smaller group.

THEOREM 5. Suppose P(B) > P(A) =1. There exists a C' < (P(A)+ P(B))/2 such that if C €
(C",(P(A)+P(B))/2), there is a steady state (¢oo(A), ¢oo(B)) where 0 < qoo (A) < oo (B). Moreover,
there exists a 6 >0 such that if go(A) > qo(A) — 6, then the process converges to (g (A), ¢ (B)).

In summary, under the competition model, there are multiple distinct steady states that differ in
long-term hiring rates for each group. As in the original model, which of these steady state arises

is crucially determined by the firm’s initial evaluation ability for each group.
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4.2. Increasing Population Size Exacerbates Disparities

We show that when the population size increases over time, this worsens the gap in hiring rates
between two groups compared to when the population size stays constant. For this extension, we
consider just two time steps: s — 1 and s, and we evaluate what happens when the group size
increases at time s. We denote the size of group g at time t as P,(g). We compare the outcome
at time s under two settings: (1) group size stays the same for both groups and (2) group size
increases for both groups, with the same multiplicative factor. Let P{™(g) be the size of group g at
time s under setting (n). Then, setting (1) corresponds to PV (A) = P,_,(A), PMY(B) = P,_,(B),
while setting (2) corresponds to P (A) = BP,_,(A), P (B) = P,_,(B), for > 1.

We assume that the only difference between settings (1) and (2) is the population increase at
time s; hence the noise variance at the beginning of time s is the same under both (1) and (2).
Then, at time s, the threshold 7, changes across the two settings; it will be larger under (2) since
the population increases, but the total mass hired stays the same. This induces the hiring rate of
each group at time s to differ. For group g € {4, B}, let ¢{"(g) be the hiring rate at time s for
setting (n). We define ({™(g) = (P.(9)q"(g))/C to be the fraction of total hires that come from
group g under setting (n). We show that the group with the lower noise variance is better off in

setting (2) than setting (1) in terms of ({(g).
PROPOSITION 5. If 02(A) < 02(B), then ((V(A) < (P (A).

This result states that if group A has a smaller noise variance, the hired pool will have a higher
fraction of group A applicants when the population increases, compared to when the population
stays the same. Therefore, increasing the population, which increases the level of competition,

favors the group with the smaller noise variance.

5. Simulation: ML-based Hiring System

To complement the theoretical analysis, we conduct a simulation study in which the firm uses
standard machine learning tools to estimate applicant quality based on observed data. These
simulations aim to mimic a practical implementation of a hiring system that is deployed over a
time frame, and our simulation results show that this system exhibits the same qualitative behavior

established by our theoretical results of the stylized model.

5.1. Simulation Setup

A firm evaluates P applicants per period from the same group, where applicant ¢ is represented by
a feature vector X; ~ N (0, I;), with d =10. The applicant’s true skill is given by S; = (8, X)) + €,
where €; ~ N(0,1) and (3 is an unknown parameter. At time ¢, the firm uses an estimator Bt,l to

compute a score S, = <Bt_1, X;) for each applicant i. The firm hires everyone whose score S, exceeds
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a fixed threshold 7 . The threshold 7 is determined through a target hiring rate ¢ € [0,1]. Given ¢,
T is chosen so that if 5 were known perfectly, then the hiring rate would equal q.

For each hired applicant at time ¢, the true skill S is revealed. The firm uses the data of hired
applicants at time ¢ to estimate Bt using linear regression with regularization. Specifically, at
time ¢, suppose the firm hires n applicants, and let X € R"*? and S € R" represent the dataset
corresponding to those applicant’s features and true skills respectively. Then, the estimator Bt
is computed as (3, = (>\I+XTX)_1 (XTS). In our simulations, we set A = 10°. This estimator
corresponds to linear regression with an ¢y regularization, which is also equivalent to Bayesian
linear regression.

To initialize BO, the firm starts with an initial dataset of size M. That is, M applicant features
are drawn at random, and their true skill is known, and the firm estimates /3, using this dataset.
The parameter M is representative of the firm’s initial evaluation ability, since a larger value of M
implies a better initial estimate of 3.

We run simulations by varying both ¢ € {0.15,0.2,0.25,0.3,0.35,0.4} and M € [50,2000], fixing
P =5000. For each set of parameters, we simulate the process over ¢t = 100 time steps, and we
repeat this 300 times. The true parameter 8 was drawn from N(0,I). We are interested in ¢qo,

the hiring rate at ¢ = 100. Figure [2] plots ¢iq0, averaged over 300 runs, for each value of ¢ and M.

Average hiring rate at t =100 (q100)
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Figure 2 For each value of M and target hiring rate (§), the plot shows the hiring rate at time ¢ = 100,
averaged over 300 runs. The population P is fixed to 5000.

5.2. Results

The simulation results mirror several findings that are consistent with the theoretical results.
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Two steady states. Figure[2]reveals a sharp transition in the long-term hiring rate as a function
of M. For each value of ¢, the hiring rate is consistently zero when M is small. As M increases,
there is a sudden increase in the hiring rate, which stabilizes to a constant number. This pattern
mirrors the bifurcation behavior established in Theorem I} the hiring rate converges either to an
inactive state with no hiring or to an active state with a stable positive hiring rate, and the outcome

depends on whether the initial estimation ability is above or below a threshold.
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(a) The percentage of simulation runs that end in  (b) The distribution of g9, conditioned on
each steady state as a function of the initial dataset o0 > 0. The mean is 0.224 and the stan-
size M. dard deviation is 0.0065.

Figure 3 For ¢ =300, we plot (a) the percentage of simulation runs that end in each steady state, and (b) the

distribution of the hiring rate at time ¢ = 100 when the hiring rate is non-zero.

Next, we evaluate the distribution of outcomes, rather than solely looking at average statistics.
We fix § = 0.3, and we observe that for any value of M, the hiring rate at t = 100 can be bifurcated
into exactly two outcomes: either the hiring rate is 0, or the hiring rate is between 20.0% and 25.1%.
The two outcomes can be thought of as the inactive and active steady states respectively; because
the process is random, the active steady state is not represented by one number. In Figure [3 we
plot (a) the percentage of simulation runs that end in each steady state, and (b) the distribution
of the hiring rate at time ¢ = 100 when the hiring rate is non-zero.

Figure confirms that the long-run hiring rate exhibits only two possible outcomes: either
zero or to a non-zero range between approximately 20% and 25%. This reinforces the existence of
distinct inactive and active steady states. Figure [3D]shows that even within the active steady state,
the long-run hiring rates cluster tightly around 22.4%, with variance arising from the stochasticity
in the learning process. This concentration highlights that while the process stabilizes, residual

randomness still influences the precise hiring rate attained. These results demonstrate that the key
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insights of the theoretical model, the existence of two steady states, and the dependence on the
initial evaluation ability emerge in a realistic ML-based environment.

We note that a key driver of these results is the regularization used in estimating the parameter
B, which is equivalent to assuming a Bayesian model where the prior on 3 is centered at 0. This
regularization shrinks the estimator 5 toward zero, particularly when the amount of available data
is small. As a result, if the initial dataset is too limited, the estimated B may be close to zero,
causing the firm to underestimate applicant quality and hire no one.

Observed hiring rate below target. Interestingly, Figure [2| shows that the hiring rate is
consistently below the target hiring rate ¢. Recall that ¢ is the hiring rate that one should expect
if 8 was known perfectly. This gap indicates that the algorithm does not perfectly recover the true
parameter 3; rather, the estimation retains a nontrivial amount of noise. As a result, the process
converges to a steady state where the hiring rate reflects this residual noise. This mirrors Theorem T}
which establishes that even in the active steady state, the noise variance remains strictly positive,
and thus the hiring rate is lower than what would be achieved under perfect information. In both
the model and the simulation, the long-run hiring rate is endogenously determined by the amount

of signal noise required to sustain that level of hiring.

Average hiring rate at t=100, M = 2000
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Figure 4 The plot shows the hiring rate at time ¢ = 100, averaged over 300 runs, where MM is fixed at 2000 and

the population size P is varied.

Smaller groups are worse off even in the active state. Next, we vary the population size
P, and we fix M = 2000, chosen to be large enough that the process should converge to active

steady state, if it exists. Figure [4] plots the hiring rate g9 as a function of P, for various target
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hiring rates. Consistent with the result that smaller groups are worse off (Proposition , we see
that the hiring rate at the active state increases with P. When P is small enough, the hiring rate

is 0, which implies that there is no active state when the group size is too small.

6. Extensions

This section contains several extensions of the original model. In Section [6.1] we consider a model
where applicants can improve their skills by exerting effort. In Section [6.2, we consider a variant
of the model in which the noise variance can depend on more than one previous time step. In
Section[6.3] we impose a maximum value that the noise variance can take. In Section[6.4] we consider
a different functional form of the noise update rule that is motivated by a learning dynamic where

a firm observes multiple features for each applicant and aims to learn which feature is informative.

6.1. What if applicants can improve their skill?

In this section, we study an extension where applicants can increase their skills by exerting effort,
which incurs a cost. Examples of what this may entail are: receiving education and training,
obtaining certifications and licenses, and gaining work experience.

At each time step, an applicant’s skill is S; = 0; + n;, where 6; ~ N(0,1) is their ability, and
n: > 0 is their effort level. The firm observes O, =0, + ¢, and 7;, where ¢, ~ N (0,07) is drawn i.i.d.
for each applicant. As before, the firm hires applicants whose expected skill is higher than the
threshold 7 > 0; i.e., E[S; | O;,n;] > 7. We assume the effort level is observed by the firm through,
for example, the applicant’s resume. We assume that the level of effort 7, is equal for all applicants
in the same group. This is equivalent to each applicant choosing an effort level 7; being knowing
the realization of their ability 6,, but with knowledge of the noise variance o7.

We assume the cost of effort is quadratic, given by ¢(n) = 4n* for some parameter a € R,. The
applicants choose the effort level n*(o?) that maximize the probability that they are hired, minus
the cost of exerting the effort. We assume that ¢(7) > 1 (or equivalently, a > 2/7%), which implies

that a group of applicants will not benefit from the noise variance diverging to ooE|

We establish that our main results continue to hold in this setting as well.

THEOREM 6. There exists a € R, such that for any a > a there exists T € R, for which:

o If 7> T, then there exists only one steady state which is inactive.

o If T < T, then there is exactly one active stable steady state, and the inactive steady state exists.
Furthermore, there ewists 62 such that all noise variances 0? < 2 converge to the active state, and

all noise variances o® > 6% converge to the inactive state.

3 Note that as 0? — oo, the firm’s evaluation of each applicant’s ability, E[0 | 6 + ¢], goes to 0, regardless of the
observation. If the cost of putting in effort 7 = 7 is smaller than 1, then as the noise approaches oo, the optimal action
for all applicants is to exert an effort of 7, and every applicant will be hired. We assume that ¢(7) > 1 to avoid this
behavior.
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Theorem [6] is the analogue of Theorem [I] in a setting where the applicants can exert effort. The
role of the assumption a > a is for technical reasons to ensure that the optimal effort is interior

and that the optimal effort does not drastically change when the noise variance changes.
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6 4

0.121 5 |

0.101 41
3 4

0.081
2 4

0.06 1
1 4

0.04 - 0-

0 1 2 3 4 0 1 2 3 4
Noise variance (0}2) Noise variance (0'3)

Figure 5 For parameters P =12, 7=1, b=1, and a =2, we plot the optimal effort and f as a function of the
current noise variance. The left plots the optimal effort, n"(z) while the right plots the corresponding function

f(z; P,7) along with y = = (analogous to Figure (1)).

Next, we show that the two steady states result in different levels of effort exerted, which then

produces a discrepancy in the underlying skill distributions across these two states.

PROPOSITION 6. For any instance where o2 < co, the optimal effort at the active state is mnon-
zero; i.e., n*(02) > 0. The optimal effort tends to zero when the noise goes to infinity; i.e.,

lim,2_, . n*(c?) =0.

Proposition [6] states that if groups A and B end up in the active and inactive state, respectively,
applicants in group A will exert non-zero effort, while applicants in group B will exert zero effort.
Then, even if the groups had identical ability distributions (i.e., ), the skill distribution (i.e., § +n)
for group A will be higher than (first-order stochastically dominate) group B. That is, the dynamics
of our model can result in tangible difference in skills across the groups. This is in contrast to the
baseline model (without effort), where even when two groups end up in two different steady states,
the true skill distributions are still identical across groups, and the groups only differed in the noise
variance perceived by the firm. This implication is of a similar flavor to the models of Arrow| (1973)
and |Coate and Loury]| (1993)), where there are multiple equilibria that differ in whether applicants

invest in improving their skill.
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6.2. What If the Noise Variance Depends on Multiple Previous Rounds?

In our baseline model, we assumed that the noise variance in the next round was solely a function of
the current round’s hiring decision. Here, we assume that the noise variance in the next round is a
combination of the hiring decision in this round as well as the current noise variance. In particular,

we assume that the noise variance for the next time step updates as

1
JfH R — +(1—a)a?,
(P-q(r07))
where « € (0,1] captures the degree of interpolation between the current hiring decision and the
current noise variance (which in turn depends on hiring in previous rounds). Note that our baseline

model corresponds to a = 1. We establish our main result continues to hold for any a, and moreover,

the critical thresholds for the noise variance convergence do not change with «.

PROPOSITION 7. For any given P and any « € (0,1], the statements of Theorem hold with the

same quantities T and 5.

6.3. Bounding the Maximum Noise Variance

In our model, the dynamics of the noise variance was defined so that the variance can be unbounded.
Specifically, in , if the proportion of applicants hired is zero (g; = 0), then the noise variance
at the next time step is infinity. In this section, we consider a modification to the model where
the noise variance is bounded at a maximum value, for instance, because of transfer learning from
other groups.

First, fix an instance of the original model where the active state exists. For this instance, let
02 < oo be the noise variance at the active steady state, and let % be the noise threshold to
converge to the active steady state, from Theorem

Now, consider a modified instance where the noise variance is capped at a maximum value M > 0.

Specifically, we assume the noise variance updates as

. 1
ot =min{ (M

to replace the the transition in . We characterize the convergence of this modified instance,

which depends on the value of M.

PROPOSITION 8. The set of stable steady states and the convergence properties are established
in the following two cases.

o If M < &2, then there is one stable steady state with noise variance min{M,o?}. All noise
variances converge to this steady state.

e If M > 52, then there are two stable steady states, one at o2 and one at M. All noise variances

0% < &% converge to o2, and all noise variances o* > &% converge to M.
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Figure 6 The noise transition function with a maximum noise variance of M = 2.5 and M = 4.5. The other
instance parameters are the same as Figure[I} P =12, 7 =1, and b= 1. The blue dots refer to the stable steady

states.

The two cases of this result can be seen pictorially in Figure [6] Because the noise variance is
bounded, the inactive state does not exist (which requires the variance to diverge to co). However,
in the second case of Proposition |8 there are still two distinct steady states that the system can
converge to with noise variances o2 and M, respectively. These two steady states differ in the
proportion of applicants who are hired at each of the steady states; specifically, the proportion
hired is smaller at the steady state with noise variance M. Hence, in this scenario, one can interpret
the steady state with variance M as the less desirable state, which a group converges to when the

initial noise variance is higher than the threshold 2.

6.4. Alternative Update Rule

We consider a different functional form of the noise update rule. As before, O; represents a noisy
signal of an applicant’s true skill, S;, and the firm computes the inferred skill, E[S; | O;], and hires
the applicant if and only if E[S, | O;] > 7. We consider the dynamics in the distribution of the
inferred skill, E[S; | O,]. Specifically, we consider a model where inferred skill distribution takes the
form:

C2
E[S; | O] ~N (Oacl + 1+bapqt1) ) (2)

where ¢;,¢5,b >0 and a € (0,1) are parameters. Note that the original model from Section assumes

that the inferred skill is distributed as

E[Strot]fvf\f(()vul/(lpqt_l)b)'
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The update rule of is motivated by considering the limit of a microfounded learning dynamic,
where each applicant has a set of features, and a firm learns about which feature is informative.
The details of this learning dynamics is developed in Appendix [D]

We analyze the dynamics given by . Specifically, the parameters of the process are ¢y, ¢y, >0,
a € (0,1), 7> 0 and group size P. The process is initialized with a hiring rate g € [0, 1]. Given this,
we show that there are parameter regimes in which there are at least two distinct stable steady

states.

THEOREM 7. For any P and T > 0, there exists constants B,D > 1,C >0 such that if b> B,
c1 <C, and a € (exp(=b),b=P), then the dynamics specified by has at least two distinct stable

steady states. All steady states are active; ¢, > 0.

We denote by g(z) to represent the mapping between the variance of the inferred skill from one
time step to the next time step. Then, whether this variance increases or decreases in one step
depends on whether g(x) is greater than or larger than x. Similar to the function f from Figurell] a
steady state corresponds to a point where g(x) intersects the line y = z. An example of an instance
with exactly two stable steady states is displayed in Figure [} The points marked x; and z; are
stable steady states, while x, is unstable. Therefore, for this instance, the process converges to x;
if the initial variance of the inferred skill is less than x,. If the initial variance was larger than o,

then the process converges to 3.

141 — y=gW)
1.2 y=x

1.0
0.8
0.6
0.4

0.2 1

Variance of E[S|O] at time t+1

0.0 X Xy X3

00 02 04 06 08 1.0 12 14
Variance of E[S|O] at time t

Figure 7 Example of the function g(z) with P=1, 7=1, b=10, a=10""2, ¢; =0, and ¢ = 1. z1 and z3 are

stable steady states, while x> is an unstable steady state.

Under the definition of g(x), a larger value of x corresponds to a “more desirable” steady state.

Since the firm hires everyone with inferred skill larger than 7 > 0, a greater variance for the inferred
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skill implies that a greater portion of applicants will be hired. Therefore, in Figure [7 the steady
state at x3 is more desirable than z;, in that the corresponding hiring rate is higher at z; than
x,. However, both steady states are active, meaning that the fraction of applicants hired is not
zero. This is in contrast to the result of Theorem [I] for the model of Section [2] where there were
two steady states, but one of them was inactive. However, the implications of the results are the
same across the two models — there are multiple distinct steady states, and which one the process

converges to depends on the initial state of the group.

7. Conclusion

In this paper, we considered a dynamic labor market model and established how disparities in
hiring outcomes can emerge and persist over time. The novel perspective of our model lies in its
portrayal of how the firm’s initial evaluation abilities, tied to historical disadvantages and beliefs
about groups, can create self-reinforcing cycles that result in long-term disparities. Notably, two
groups with identical skill distributions might differ significantly in hiring outcomes because of
these initial perceptions.

We believe that this paper serves as a bridge between the literatures of statistical discrimina-
tion and algorithmic fairness, as well as contributing to each of these domains. On the statistical
discrimination front, our work provides a dynamic generalization of a classical model, where the
dynamic nature provides insight on why and how disparities evolve over time. On the algorithmic
fairness front, our model provides a framework that models how the performance of machine learn-
ing algorithms change over time based on the availability of data, which depend on past decisions.
This framework can be leveraged and extended to settings beyond the hiring application considered

in this paper.
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Appendix A: Proofs for Section

This appendix includes the omitted proofs from Section [3]

Proof of Lemma [
Let us define the following functions:

1
Pr(1=9(B(x)))"

B(z)=7V1+2 and f(x)=

We would like to show that f(z) intersects the line y = at most twice for z > 0. We have that f(z) ==z
if and only if z(1 — ®(B(x)))? =1/P". We define v(z) =z(1 — ®(B(x)))? and prove that v(x) intersects the

horizontal line y =1/P® at most twice. To prove this, we can show that v'(x) =0 at most once. We have

V(@) = (1= @(B(2)))" — 2b(1 - &(B(x)))" @' (B(x)) B'(x). (3)

Then, v'(z) =0 if and only if

1—®(B(z))

S (B@) =bxB'(x). (4)

Let L(z) = % and R(z) =bxB’(z) be the LHS and the RHS of (4)) respectively. If we show that L(z)
is strictly decreasing in xz and R(z) is strictly increasing in x, then L(x) would intersect R(z) at most once,

which completes the proof.

Note that if h(z) = :=2) | we have that h/(z) <0 because

' (z) ?
@) () - (1
M@= (@ (0))
21— B(2)
()

O(z))®" (x)

~—

=1+

<0,
where the second equality follows from using ®”(z) = —z®’'(x), and the inequality follows from using 1 —
O(x) < <I>’(a:)/x Then, since B(x) =71+« is strictly increasing and h(x) is strictly decreasing, L(z) =

h(B(x)) is strictly decreasing.
Next, consider the RHS of Eq. . We have

1
B'(z)= 57’(1 +x)712,

4 To see this inequality, notice that, for any t € Ry, since z/t > 1 for = in (¢,00), we have

2
1_(1) / —z/2
W

/ x—x/2dx

1 —t2/2 _ P'(t)
T Vont t
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Therefore, we can write
oy b —12 b —3/2
R'(z)= 27’(1+:c) 4:177'(1+x)
1
:gf(l—l—x)_l/Q (1 ° )

_5.1+x
> 0.

This establishes that L(x) is strictly decreasing and R(z) is strictly increasing. Hence, they intersect at most

once. l
Proof of Theorem [

We keep using the following shorthand notation:

1
Pr(1—®(ry/1+x))

fz) =

Notice that f(0) = m > 0.

We will show that there exists a 7 such that if 7> 7, f(x) is strictly above the y =z line for all 2 > 0,
while if 7 < 7, then f(x) has two intersections with y =, where f(x) is below y =z only in between the two
intersections. Note that if f(z) is always above y =z, then no matter what the initial noise variance is, the
variance will keep increasing at each time step, and will approach co as t — co. Therefore, if f(x) is always
above the y =z line, then there is only one steady state which is inactive. In the other case where f(z) has
two intersections with y =z, let 2 is the second intersection of these curves. Then, any 02 < % converges
to the first intersection of the curves, which is an active stable steady state. Any o2 > &2 converges to the
inactive steady state. The second intersection, &2, is also an active steady state, but it is not stable.

Therefore, to prove Theorem |1, we simply have to show the existence of the threshold 7 where f(z) is
above y =z for 7> 7, and f(z) has two intersections with y =« for 7 < 7.

First, we show that for any 7> /2P%/b, f(x) is above the y = x line for all x > 0. Since f(0) >0, we will
simply show that f'(z)>1 for all > 0.

N b (TV1+1)5 A4
P (1= @(rv/1+2))"+!
(a) b (1 —o(rVi+a)) 5
= Po(1—&(r/1+2))r+!

1w,
2P (1—®(ry/I+2))
where (a) follows from using 1 — ®(z) < ®'(x)/x and (b) follows from 72 > 2P*/b.

Next, we will show that when 7 is small enough, f(z) has exactly two intersections with y = x, where f(z)
is below the line y = x only in between the two intersections. Note that for any 7, if = is large enough, then

f/(x) > 1. This can be seen using the previous set of inequalities:

f'(x)Zstzb ! - W,
(1 —o(ry1 +m))
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where (a) follows by noting that for large enough z, 1 — ®(74/1+4 ) becomes close to 0 and therefore for
7 < /2P?/b, we have (1 — ®(ry/1+))" < 2.
Since f(0) > 0 for all 7, we will show that when 7 is small enough, there exists a zo > 0 where f(z¢) < xq. Let

To = (l)Q — 1. Then, f(z) = 55—, and hence f(zo) <o if 7<1/1/(P?(1—®(1))?)~1 + 1. Therefore,

= = PPa-a(1)?”
if 7 <min{1,1//(P?(1 — ®(1))?)~1 + 1}, then there exists a zo > 0 such that f(x() < xo. Hence, for 7 small

enough, f(x) has two intersections with y = z.

We have shown that if 7 is large enough, f(x) has no intersections with y =z, while if 7 is small enough,
it has two intersections. Note that taking 2’ as fixed, the value of f(z’) strictly and monotonically increases
as 7 increases. Therefore, let 7 be the smallest value of 7 where f(z) has fewer than 2 intersections with
y=x. Then, it must be that for 7 > 7, f(x) has at most one intersection with y = x, in which there is only

one inactive steady state. For 7 < 7, f(x) has two intersections with y = x. This completes the proof. B

Proof of Proposition

Note that by using Lemma and Theorem & (P) is the second intersection of f(x) with y = x. By increasing
P, the function

1

f(x,P): b
P (1-0(ryTF7))

decreases for all x € R,. Therefore, the second intersection of f(x) with y = x increases as P increases,
proving the first statement of the proposition.

For the second statement of the proposition, suppose there are two groups with populations P; and P,
where P, < P,. We will show that q(7,02(Py,7)) < q(1,02(P,,7)). First, suppose group 1 has no active state;
i.e., 02(P,,7) =0cc. Then, q(1,0%(Py,7)) =0 and hence the inequality holds. Second, suppose o2(P;,T) < 0o
is finite. Suppose that x} (correspondingly, x3) is the noise variance in the active steady state when the
population size is Py (correspondingly, P5). We also let g} and ¢; be the hiring probability in the active steady
state for the two groups, respectively. Then, by definition, f(z}, P1) =1/(Piq;)® and f(z5, P2) = 1/(Paq3)°.
Note that f(x,P;) = i—f:f(x,Pg) for any z > 0. Since f(x, P1) > f(x, ), and z; corresponds to the first
intersection of f(z, P,) with y =, we have that 2} > x3. Then,

L/(Pui) = (05, Pi) = T2 1, Pe) > s, Po). = o1/ (Pags ) 6
where the inequality follows from x7 > 3 and that f is increasing in z. Rearranging the first and last terms

results in g5 > gi as desired. W

Proof of Proposition

Let g = q(7;02(P, 7)) be the proportion of applicants hired at the active steady state. Then, if an intervention
hires ¢ proportion of applicants in a single round, then the noise variance at the next time step will be
02(P,7)). Therefore, under the natural hiring rule, the noise variance will stay at this value by definition of

the steady state, proving this is a sufficient intervention. H
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Proof of Proposition

Let 02(A) be the noise variance corresponding to the active state for group A. Suppose P(B) > P(A). Then,
if ¢;(B) = ¢.(A), then it will be that o7, ,(B) < 0?(A). Proposition [1| states that 5%(B) > 52(A). Therefore,
we have that o7, ,(B) <0?(A) <5°(A) < 5°%(B). Since the noise variance at time ¢+ 1 is below the threshold
5%(B), group B will converge to the active steady state.

Next, suppose P(B) < P(A) and the active steady state for group B exists. Let 0%(B) be the noise variance
corresponding to the active state for group B, and let ¢.(B) € [0,1] be the corresponding hiring rate at the
steady state. From Proposition [1} 02(B) > 02(A), and therefore ¢.(B) < ¢q.(A). Since ¢,(B) = ¢.(A) > ¢.(B),
it must be that o7, (B) < 02(B) < 5*(B). Therefore, group B will converge to the active steady state. W
Appendix B: Proofs of Competition Results

B.1. Preliminary Terms and Results

For group ¢ at time ¢, we let
1
R0
denote the variance of the distribution of E[S; | O;]. That is, E[S; | O] ~ N(0,~).

Ve(9) (6)

The key idea of the proofs for the competition model revolves around analyzing a function 7,(q). For a
group g, we define the function 7,(g) for ¢ € [0, 1] to be the threshold such that for a group with noise variance
0?2 =1/(P(g)q)®, the threshold 7,(g) results in exactly ¢ percent of applicants hired. That is, if ¢;_1(g)
proportion of applicants from group g were hired at time ¢ — 1 and the threshold at time ¢ is 7,(g:—1(g)),
then we have that ¢,(g) = ¢;—1(g). The function 7,(¢q) can be explicitly written as

-1

O @
If the threshold at time ¢, 7, is greater than 7,(g;_1(g)), this implies that the proportion hired from group

g at time ¢, g,(g), is less than ¢,_1(g). Conversely, if 7, < 7,(¢g;—1), then we will have ¢;(g) > ¢;—1(g). Therefore,

whether the hiring rate increases or decreases for group g depends on whether the threshold 7, is less than

or greater than 7,(q;_1(9)).

We first prove several properties of 7,(q).

PROPOSITION 9. The function 7,(q) satisfies the following properties:
(i) 7,(¢) =0 as ¢ —0.

(i) There exists a ¢' >0 such that 7,(q) >0 for all g € (0,¢’).

(iii) There exists a ¢’ >0 such that 7,(q) <0 for all g € (¢',0.5).

Proof of Proposition[d We first state a useful upper bound on the inverse CDF of the normal distribution
that holds for all ¢ € [0,0.5]:

71 (1 —q) < /2log(1/29). (8)

Proof of property (i). Denote by f1(q) =® (1 —q) and f2(q) = +/1+ 1/(Pq)? the numerator and denom-
inator of 7(g) respectively. Note that when ¢ — 0, both f1(g) — oo and f2(q) — co. We take the derivative

of both terms and then use L’Hopital’s rule.
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We have fi(q) = —m, where ¢(z) is the pdf of the normal distribution, and f}(q) =
—b . Therefore,
2Pbgb+1,/14+1/(Pq)®
/ 2Pbq*t1\ /1 +1/(Pq)b
g 2L0) 510 _ 2P TEITP)
=0 fo(q)  a=0 f3(q) om0 bH(®7'(1—q))
2P
= lim ="/ I+ 1/(Pg)" - Var exp((®(1 - 0))*/2)
q—r

Using , we get

b /
lim 410 < lim %qb"'l, /14+1/(Pq)"- 272(;

a—=0 fo(q) = a=0

Por . \/1+1/(Pq)®
= 2 lim pan

q—0

_ 1 —b-1
Ve N

b a0 “bg1

g ()7
where the second last step uses L'Hopital’s rule.
Proof of property (ii). Recall that 7(¢q) = 223, where fi(q) =P 1(1—¢q) and fo(q) = /1+1/(Pq)®.

() = fil)  fi(a)fs(q)
fala)  (f2())?

1 bfi(q) >
- (fil) ) 9
1+1/(Pq)’ (fl(q) 2¢(P°q" +1) )
We want to show that f](q)+ 2(1(%}75311) > 0 when q is close to 0. Recall that f(q) = —m. As qg—0,
Q(I(Z;fgiéifi_l) — o0 and fi(gq) = —oo. We will show that M;fbliégll) — 00 at a faster rate than fi(q) = —oo.

Consider the fraction of these two terms:

(mAid) o 11— ge@ ' (1-q)
—fi(a) 2q(P*q*+1)

Note that ¢(z) is a decreasing function in z > 0. Using (8], we have ¢(@~*(1—q)) > ¢(+/21og(1/(29))) =
2q/v/27. Therefore,

bf1(q)
(zq(qug+1)) S b@‘l(l —q)
~fila)  ~ V2m(Prgb+1)

Note that %ﬁb_ﬂ) — 00 as ¢ — 0, and 7'(¢) > 0 for any ¢ that satisfies % > 1. Therefore, there

exists a ¢’ > 0 such that 7/(¢) > 0 for all ¢ € (0,¢’).

Proof of property (iii). From the definition of 7/(¢q) from @, it is easy to check that 7/(0.5) < 0; note that
£1(0.5) <0 and f;(0.5) =0. Since 7/(q) is continuous, we have that there exists a ¢’ such that 7'(¢q) <0 for
all g € (¢/,0.5]. |
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B.2. Preliminary Results on the Dynamics

We now prove results on the convergence of the system. The direction of movement of the hiring rates depend

crucially on how the value of 74(q;(A)) compares with 75(g,(B)).

LEMMA 2. If74(q:(A)) > 78(q:(B)), then qi41(A) > q:.(A). If Ta(q:(A)) < 75(q:(B)), then qi41(A) < q:(A).
If Ta(q:(A)) = 18(q:(B)), then qi41(A) = q.(A).

Next, we show that a steady state (¢5, ¢y ) > 0 must satisfy 74(¢%) = 75(¢%)-

LEMMA 3. If ¢:(A) = ¢% and ¢.(B) = ¢¥ as t — oo where ¢ >0 and ¢ > 0, then it must be that

TalqX) =Tr(4F)-

Lastly, we show show that if 74(g:(A)) > 7(q.(B)), then ¢;(A) will converge to the closest point to the
right where 74(¢:(A)) = 75(¢:(B)) is equal to zero. Similarly, if 74(q.(A4)) < 75(q:(B)), ¢:(A) will converge to
the closest point to the left where 74(q,(A)) =75(q(B)) is equal to zero.

LEMMA 4. Suppose 7a(q:(A)) > 75(q:(B)), and suppose ¢ = inf{q > ¢:(A) : 74a(q:(A)) = 75(¢:(B))}
exists. Then, lim,;_, ., q:(A) = q. Similarly, suppose T74(q:(A)) < 75(q:(B)), and suppose § =sup{q < q;(A) :
Ta(q:(A)) =75(q:(B))} exists. Then, lim, ., q;.(4) =4.

Proof of Lemma[3  Suppose 74(qo(A)) < 75(go(B)). We claim that the threshold at time ¢ =1, 7 is strictly
between 74(qo(A)) and 75(qo(B)). Suppose instead, 7 < 74(go(A)). Then it would be that g1 (A) > go(A) and
q1(B) > qo(B). This is a contradiction that both groups increase the proportion hired. Similarly, it will be a
contradiction if 7> 74(go(B)). Therefore, 71 € (Ta(qo(4)),7(q0(B))).

Since 11 > T4(qo(A4)), it will be that ¢1(A) < go(A), and since 71 < 75(go(A)), it will be that ¢1(B) < go(B).
Then, applying Proposition [4 gives us the result. |

Proof of Lemma@ Suppose, to the contrary, that ¢;(A) — ¢% and ¢;(B) — ¢ where ¢ >0 and ¢3 > 0,
and 74(q%) #75(¢%). Let 74 =7(q%) and 75 = 7(¢%). Suppose, WLOG, 74 < 75. Let 71 =74+ (75 —7a) /4,
To=7a+ (78 —7a)/2 and 73 =74 + 3(7p — 7a)/4 be three points evenly spaced between 7, and 75. Let
Q,(1,9)=1— @(T\/W) denote the percent of applicants hired from group g when the previous
proportion of applicants hired was ¢ (and hence the noise in this round is 1/(P(g)q)®), and the threshold is
T.

Let ¢y = Qa(71,9%) be the proportion hired if the previous proportion hired was ¢ and the threshold if
T1. Since 7 > 74, we have that ¢/, <¢%. Since ¢,(A) — ¢, let to be large enough so that ¢;(A) > ¢/, for all
t > to. That is, if ¢t > to, then the percentage of applicants hired will be greater than ¢/, henceforth.

Next, consider the threshold 5. We will show that it must be the case that the chosen threshold should
be strictly smaller than 7. We have that Qa(72,¢%) < ¢’y- When 73 is fixed, g(72,-) is a continuous function
in the second argument. Therefore, there exists an € > 0 such that if |¢ — ¢ | <e¢, then Q4(m2,q) < ¢/,. Let t;
be large enough such that for all ¢ > ¢, we have that |¢;(4) — ¢¥| < e. Therefore, when ¢ > t;, a threshold of
7o results in the proportion of applicants being hired to be strictly less than ¢/;.

Combining the two above arguments, if ¢ > max(¢o, 1), since it must be that ¢,(A4) > ¢4, but a threshold
of 75 results in g(72,q:(A4)) < ¢4, it must be that the threshold 7, is strictly less than 5.
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Now, one can repeat the same argument with the thresholds 73 and 75 for group B (where 73 is the analog
of 71 in the above argument) to show that it must be that the threshold 7, is strictly higher than 75. This
results in a contradiction. ]

Proof of Lemma[j} Suppose 74(q:(A)) > 75(q:(B)), and suppose g4 = inf{q > g4 : D(q) = 0} exists. Let
g = (C' — P(A)qa)/P(B) be the corresponding hiring rate for B. (¢a,qp) is consistent and corresponds to
a steady state. Let 4 =1/(14+1/(P(A)qa)) and v =1/(1+1/(P(B)gg)) be the corresponding + at this
steady state. From Lemma [2] we know that g, 1(A4) > ¢.(A).

First, we show that g, y1(A) is at most ¢. Let 7, be the threshold used at time ¢t. Suppose, to the contrary,
that ¢;11(A) > G. Since ¢;(A) < qa, 7:(A) < va. Therefore, the threshold 7, must be smaller than 74(qa).
Since ¢;(B) > gg, 7:(B) > v5. Then, under the threshold 7, < 74(ga) = 75(¢s), the proportion hired for
group B would be larger than ¢g. That means ¢,1(A4) > g and ¢;1(B) > ¢, which is a contradiction since
P(A)ga+P(B)gs =C.

Therefore we have shown that ¢,(A) increases in ¢, and ¢,(4) < ¢ for all ¢. Then, it must be that
lim,_, . ¢:(A) = ¢ from Lemma 3| The second statement of the lemma can be shown in the same way as the

first. O

B.3. Main Proofs

Proof of Proposition , For a fixed ¢t > 1, suppose ¢;_1(A) < q:(A). We will show that ¢;(A) < ¢:+1(A4).
Since P(A)q.(A) + P(B)q,(B) = C for any s, if the mass hired from group A increased (¢;_1(4) < ¢;(A4)),
it must be that the mass hired from group B decreased; ¢;,_;(B) > ¢,(B). Therefore, v,41(A) > v,(A) and
Vi1 (B) <7 (B).

Let 7’ be the threshold such that Pr(E[S;+1(A) | Oi+1(A)] > 7') = ¢:(A). 7’ is the threshold that yield the
mass hired from group A to be the same from time ¢ and ¢+ 1. We will show that 7,1 < 7’, and hence the
mass hired from group A will be larger at time ¢ + 1 compared to t. Since v;41(A) > v:(A), we have that
7/ > 7. Since ;41 (B) < 7.(B), the mass hired from group B at time ¢+ 1 if the threshold was 7’ is smaller
than ¢,(B). Therefore, under 7/, the total mass hired would be strictly less than C. Hence, it must be that
Tiy1 < 7'. That means that ¢, 1(A), the mass hired from group A at time ¢+ 1, will be larger than ¢,(A).
The same argument can be used to show that if ¢,(A) < g,_1(A), then ¢,1(A) < q.(A).

Lastly, if ¢;(A) = ¢;_1(A), then ¢;(B) = ¢;_1(B). Therefore, since nothing changed from time ¢ — 1 to ¢, the
threshold 7, = 7;_1, hence we will have ¢;1(A4) = ¢,(A).

The limit lim,_, ., ¢;(A) exists due to the monotone convergence theorem. |

Proof of Theorem[3. We assume g = A and ¢’ = B, but the same proof works if g = B and ¢’ = A. Let
gz = C/P(B) be the proportion hired from group B if no one from group A is hired. Let § > 0 such that if
lg — gg| <6, then 75(q) > 75(ggs)/2. That is, if ¢,(B) is within § of ¢p, then 75(g;(B)) is lower bounded by
T5(qp)/2. Let ¢ € (0,0P(B)/P(A)) be small enough that 74(q) < 75(¢p)/2 for all g € (0,¢’) (this is possible
since 74(q) — 0 as ¢ — 0 from Proposition [9}

Then, suppose ¢o(A) < ¢'. Since go(A) < P(B)/P(A), it must be that go(B) > g — . Therefore,
78(q0(B)) > 75(gr)/2. Since qo(A) <¢', Ta(q0(A)) < 75(q5)/2 < 75(q0(B)).
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Therefore, g1 (A) < go(A) and ¢;(B) > ¢1(B). By Proposition [4] ¢,(A) decreases over time and converges
to some limit ¢, and ¢;(B) increases over time and converges to some limit ¢%. Moreover, we have that
4:(A) <75(qp)/2 and q,(B) > 75(qz)/2 for all ¢ > 0. Therefore, using Lemma 3] it cannot be that 74(¢%) =
78(¢%). Hence, it must be that ¢ =0. O

Proof of Theorem @ Let ¢’ > 0 such that 75(q) is strictly increasing in ¢ for all ¢ < ¢’ (such a ¢’ exists
due to Proposition @

Let C' = ¢ P(B), and let C < C’. We will show that 74(qo(A4)) < 75(qo(B)). Note that since P(A) < P(B),
we have 74(q) <75(q) for any g. The inequality is strict if P(A) < P(B).

Hence if qo(A) = qo(B) and P(A) < P(B), then we have 74(qo(A)) < 758(q0(A)) = 78(qo(B)). Next, if
q0(A) < qo(B), we have 74(qo(A)) <75(qo(A)) < 75(qo(B)), where the second inequality follows from the
fact that 75 is increasing for ¢ € ¢'.

Hence we have 74(qo(A)) < 78(qo(B)) Then, by Lemma [2| ¢,(A) decreases over time and converges to
some limit ¢, and ¢;(B) increases over time and converges to some limit ¢, where ¢% > ¢%°. Then it must
be that ¢ = 0. If it was not, then by Lemma 3] it must be that 74 (¢%) = 75(¢%), which is not possible since
75(+) is strictly increasing under the domain of interest, and 74(q) < 75(q) for all . O

Proof of Theorem . Let ¢’ € (0.0.5) such that 74(q) is strictly decreasing in ¢ for all ¢ € [¢/,0.5); such a
¢ exists from property (iii) of Proposition @ Let C' =2¢'. Fix any C € (C",1). The corresponding steady
state is the one where g4 = g5 = C'/2. We would like to show that if the initial hiring rates start close to
ga = qz = C/2, then we still converge to this steady state.

Let 6 > 0 such that 74(q) is decreasing for all g € (C/2 —§,C/2 4+ 6). Suppose go(A) < go(B), and that
qo(A) > C/2 — 6. Then, 74(qo(A)) > 78(qo(B)). By Lemma [4] we have that ¢,(A) converges to inf{qg >
qo(A) : 7a(g:(A) = 75(q:(B))} = C/2. Therefore, if go(A) and go(B) start close to C/2, then we converge to
Goo(A) =4 (B) = C/2. O

Proof of Theorem @ Let ¢’ € (0.0.5) such that 74(q) and 75(q) are both strictly decreasing in ¢ for all
g €(¢',0.5); such a ¢’ exists from property (iii) of Proposition @ Note that 74(¢") < 715(¢") if P(A) < P(B).

Let 7 =1714(q"). Let Tg_l(T) be the inverse of 7,(g) over ¢ € (¢’,0.5), which exists since 7,(¢) is strictly
decreasing over this interval. Then, any 7 € (0,7) corresponds to a steady state for A and B for the capacity
corresponding to C' = P(A)7, ' (1) + P(B)15"' (7). Moreover, as 7 goes from 7 down to 0, the corresponding
capacity C increases from some value C’ to 0.5(P(A) + P(B)). (C’ is the capacity corresponding to the
steady state for 7.)

Therefore, for any C € (C’,0.5(P(A) + P(B)), there exists a qa,q5 € (¢’,0.5) such that 74(q4) = 75(¢s)
and P(A)qa + P(B)qg = C. This shows the first part of the theorem.

Let 0 > 0 such that for all ¢ € (g4 — 0,q4), Ta(q) > Ta(ga). We claim that under capacity C, if ¢o(A) €
(ga — 9,q4), then we converge to the outcome (ga,gz). By construction, we have 74(qo(A)) > Ta(ga) =
75(q5) < 75(q0(B)). Therefore, by Lemma q:(A) will increase over time and ¢;(B) will decrease over time.
We need to show that g;(A) must converge to ga.

To prove this, we show that ¢,(A) < g4 and ¢,(B) > g for all . We show this by induction. This is satisfied
for ¢t = 0; assume it holds for ¢. Suppose, to the contrary, that g;y1(A) > ga. Let v4 =1/(1+1/(P(A4)ga))
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and v =1/(1+ 1/(P(B)gg)) be the corresponding ~ at the steady state. Since ¢,(A) < qa, 7:(4) < ya.
Therefore, the threshold 7, must be smaller than 74(g4). Since ¢,(B) > qg, 7:(B) > 5. Then, under the
threshold 7; < 74(qa) = 75(gs), the proportion hired for group B would be larger than gz. That means
¢i+1(A) > qa and ¢,11(B) > gp, which is a contradiction since P(A)gs + P(B)gg =C.

Lemma [3] states that ¢,(A) and ¢,(B) must converge to a limit wherein which 74(g) = 75(g), and therefore

they must converge to ¢4 and ¢gp.

O
B.4. Proof of Proposition
We will show
WA @A
g (B) 457 (B)

This implies

P (A)g{N(A) PP (A)¢P(A)
DO S p®py @ Ay
P (B)gs '(B)  P7(B)gs"(B)

since the ratio of the group sizes are the same across settings (1) and (2). Then,

PO (A)gM(A) PP (A)gf* (A) 2
¢ 4) PO (A0 () + PO (B (B) ~ PP (4)g® (4) + PP (B)g" (B) “

completing the proof.

Our goal is to show . The hiring rate at time s for group g is the probability that the inferred skill
E[S,(9)|Os(g)] is above the threshold 7. Note that the inferred skill has a distribution of N(0,v,(g)), where
the v,(g) is the same across settings (1) and (2). Since o,(A) < 02(B), we have v,(A4) >~,(B) (as defined in

@)

The difference between the two settings is the threshold 7. Let 7(1), 7(2) be the induced thresholds at time

s for settings (1) and (2) respectively. Since the thresholds are defined to satisfy
P,(A)Pr(E[Ss(A) | Os(A)] > 7) + P.(B) Pr(E[Ss(B) | Os(B)] > ) = C,

and we have that P,(A) and P,(B) are higher under setting (2), it must be that 7(2) > 7(1), Then, to show
, we prove the following lemma.

LEMMA 5 (Monotonicity of the normal—tail ratio). Let X ~N(0,0%), Y ~N(0,0%) with 0 <oy <

ox. Define the function

Then g(t) is strictly increasing for t > 0.

Applying Lemma implies that g(7(")) < g(7(?), which finishes the proof.
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B.4.1. Proof of Lemma We write the standard normal survival function and density as ®(z) =
1—®(z) and ¢(z) = \/%76_22/2. Put a =o0y', b=0y"; thus 0 < a < b. For every t >0

Set f(t) =logg(t). With the inverse Mills ratio h(z) = ¢(2)/®(2) (2 > 0),
' (t) = —ah(at) +bh(bt).

Define m(z) = z h(z) = 2¢(2)/®(z). Differentiating,

m'(z) = g((;))Q (1—22)3(2) + 20(2) .

For z > 0 the classical Mills bound ¢(z) > 2®(z) implies the bracketed term is positive, so m’(z) > 0. Hence
m is strictly increasing on (0,00).

Because a < b and m is increasing, m(bt) > m(at) for every t > 0. Dividing by ¢ > 0 gives bh(bt) > a h(at).
Therefore, f'(t) >0, and hence g(t) = e/® is strictly increasing for ¢ > 0.
Appendix C: Proofs for Section [6.1

This section provides proofs for the results regarding the effort models.
LEMMA 6. The optimal effort, n*(x) satisfies
7 @)= (o @V VI T 7
The proof of this lemma is immediate by taking the first order conditions of the definition of n*(x):

n*(z) =argmax1 —®((r —n)vV1+1z)— g172.

n=>0 2

Next, we provide an upper bound on the optimal effort, n*(c?), as a function of 7.
LEMMA 7. n*(0?) < ar for a constant o < 0.15.

Proof of Lemma

Fix 0. If 0? is the noise variance and 7* () is the effort, then the distribution of E[S | O] is N'(7*(0?), 1553)-
Our goal is to show that n*(0?) < ar, where a < 0.15 will be a constant defined later.

We provide a geometric interpretation of the optimal effort n*(0?), which we summarize in Fig. [8| Let
h(z)= \/?exp(—%(l +02)z?) be the pdf of A(0, ﬁ) Let ¢(xz) = —ax + a7 be the line that represents

the derivative of the effort cost. Let A,(z1,22) and A,(z1,22) denote the area under ¢ and h respectively

between x = z; and x = z5. Then, for n >0, A,(7 —n,7) represents the cost of putting in effort 7, while
A (T —n,7) represents the increase in utility in putting in effort n, compared to putting in 0 effort. Therefore,
the optimal effort n* is the point that maximizes A, (7 —n,7) — A,(7 —n, 7).

Since n* maximizes the difference in area under the curves of h and ¢, it must occur at an intersection of
those curves. Note that ¢ and h can have up to three intersections; this is denoted in Fig. |8| as x;, x5 and

x3. We show that the optimal effort occurs at the last intersection of ¢ and h.

CrLAM 1. n*(0?) =7 — x5, where x5 is the largest intersection of £ and h.
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Figure 8  h(z) represents the distribution of E[S | O], and ¢(z) represents the derivative of the effort cost. This

plot shows an example of a case where the two curves intersect three times.

We defer the proof of this claim to after the proof of this result.

Fix 7 and a, and let zg = R7, where R = (1 +4/1- 2‘”‘"&#) ~ 0.859. We will show that ¢(z¢) > h(xo).
If this is the case, then the last intersection of £ and h will be after zq. Since a > 2/72, £(x) = £(RT) > @.
We will show that h(R7) < @. More specifically, we will show this holds under any zero-mean normal

distribution that h can represent as well as any 7. That is, we will show the following statement: for any

x>0, ¢p(x,0) < M for any o > 0, where ¢(x,0) = a\}ﬁ exp(—%ﬁ—i) is the pdf of the normal distribution
with mean 0 and variance 2.

Fix > 0. We will find the o that results in the highest value of ¢(x,0). We take the derivative of ¢(x, o)

with respect to o:

6o(a.) = o= (—iexp<—§j2> +2 exp(—;j2><—;w2><—2>a-3>

g

_ew(3B) (L,
o221 o2 |’

Then, ¢,(z,0) =0 when z = o. Therefore, ¢(x,0) is maximized when o = . This yields the desired result:

for any = and o,

R was defined exactly so that the last step goes through. B
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Proof of Claim [1]

Let Ay(z1,22) and Ap(z1,22) denote the area under ¢ and h respectively between z = z; and = = z5. Recall
that n* is the point that maximizes A, (7 —n*,7) — A,(T —n*, 7).

If £ and h have only one intersection, then it is clear that n* =7 — xq, where xg is the intersection of the
curves.

Now, assume that ¢ and h have three intersections as in Fig.[§] Our goal is to show that n* = 7 — x5, rather
than n* =7 —x,. We can see that clearly, if n =7 — x3, then the area under h is larger than the area under
¢, and therefore the utility of putting in effort 7 — x3 is larger than the utility of putting in zero effort. We
will show that putting in effort n =7 — x; (the first intersection) will result in a utility that is lower than
putting in zero effort.

We will let A,(z1,2) and A, (21, 22) denote the area under ¢ and h respectively between z = z; and x = z,.
Assume, to the contrary, that there exists three distinct points of contact, and that Ay (z1,7) > Ay(z1,7).
We will derive a contradiction. Recall that we assume a >2/72, which implies that 4,(0,7) > 1.

Let o2 be the variance of the normal distribution that h represents. Note that the concavity of h changes
from negative to positive as x increases from 0. It is easy to show that the inflection point of h occurs at
x =0, and the derivative of h at that point is h'(c) = 1/2 . Then, if ¢(x) has three points of contact with

h, it must be that x; occurs during the parts when A is concave; that is, it must be that
1 <o0. (11)

Moreover, the slope of the line ¢(x) must be less steep than h'(o); that is, it must be that
o172

o221’

then the line ¢ would intersect h at most once.

a <

If it was the case that a > 62F’

Therefore, we have that a satisfies both a >2/72, and a < = \/ﬂ' Combining this implies

T >0\ 2V2mel/? > 2.870. (12)

Obviously, A, (xz1,7) < 1/2. But note that by assumption, we have A,(0,7) > 1. Since we’re assuming

Ap(x1,7) > Ay(21,7), it must be that x; is large enough such that A,(x;,7) < 1/2. Therefore, it must be
that

1> (1-1/V2)r.
Combining this with results in
x> (1-1/v/2)2.870 > 0.840.

Now, we will go through the above logic one more time. Since z; > 0.840, we have 4, (z1,7) <1—-(0.84) <
0.21. Therefore, it must be that A,(z1,7) < 0.21. Using that A,(0,7) > 1, it must be that z; > (1—+/0.21)7 >
0.547. Using , we get

21 > 0.547 > 0.54(2.870) > 1.540.

This is a contradiction to , and we are done. H
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Proof of Theorem

We prove this theorem by using the following claims.

Claim 1: Similar to Lemma [I} for large enough a, the function

fla)= - ;
P (1= ®((r —(2)) VI +2)

where the optimal effort is given by

n*(z) =argmax1l —®((t —n)vV1+x)— g772

n=>0 2

intersects y = x in at most two points.
Proof of Claim 1: Using the same notation and line of argument as the one in the proof of Lemma [I} we
argue that
1-9(B
Loy Lo 2B
'(B(x))

where
B(z)=(r—n"(2))Vl+a
is decreasing in = and
R(z) =baxB'(x)

is increasing in x. Let us start by proving L(x) is decreasing. We can write

, B(z)(1-2(B()))\ 5
L(x):<—1+ 5@ >B(x).

Notice that the first term is negative (because 1 — ®(¢) < ®'(¢)/t for all t e R, ), and therefore, it suffices to

prove that B(z) is increasing in z, which we prove next.

B'(x) can be written as
L7 —n"()
2 itz

T—n"(z)
2(1+z)

an expression that depends on n*(x). Recall that the first-order condition (Lemma@ gives us

7@ = (- @)VIFVITE.

B'(z)=—-n(x)V1+z+

Then to show that B’(x) > 0 is equivalent to showing 7} (z) < . We now replace the term 7*(z) with

We take the derivative of both sides of the above equation, which yields
1
* :¢)II< _n* 1 ) _n* 1+ o - 1+
@) =0 (7= @)VIT ) (VT4 (7= (0) g ) VIT
1
' ((t—n* 1 —_—.
0 ((r = @)V IF ) e
Simplifying the above expression and using ®" (y) = —y®’(y) results in
)L @) VTFT+ A +a)
77:0 T)=5 a *
2 5= v — (T (@) (14 2)*
* - * 2
7@ (3 (0= @) + )

@ @)+ "
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Using this, to show that B’(z) > 0 is equivalent to showing
* - * 2
7@ (3 0-r@) i) oy
1—n*(z)(T—n ( )1+ ) 2(1+x)
If the denominator of the LHS is positive, then (14) holds if and only if n(z) < 7/2. The latter is true due to

(14)

Lemma [7

We now show that the denominator of the LHS of Eq. is indeed positive. We write this as the following:

L—n*(2)(r = 0" (2)) (L +2) = (" ())*(L+2) =" (2)7(1 + ) + 1 (15)

If we take z as fixed, the above is a quadratic with respect to n*(z). The roots of this quadratic are
1
4
than the root, then is positive. From Lemmal n*(x) < 0.157, hence this is always true. If the roots do

tr+iy/r2-4/(1+ x)) If the roots exist, note that the smaller root is larger than 37; if n*(z) is smaller

not exist, then is always positive for any n*(x). Therefore, (15) is positive and hence B’(z) > 0.
We next prove that B’(x) (and therefore, bxB’(x)) is increasing. Notice that the optimal effort is given
by

n*(m)z%@'((r—n*(m)) \/1—1—95) V1+z. (16)

Taking the first-order derivative of the above expression results in

L) (= (r = (@) + %)
L= (z)(r=n*(z))(1 + =)
(z) with respect to x yields

n,(z) =

Now taking the first-order derivative of x B’

i (o8 (@) =5
VIFe (- (- 2)n*<x
B 2(1—(1+a:)( (z))n(x))
x<_ () i Gt ) I 0
41+ )3 4M(1—( +a)(r—nr () (x)) 2V1+w
VIFe (s = (0= (@)?) mi(@)
a 2(1—=(1+z)(r—n*(x))n* ()

VIFar @)~ + 2w @) @)
2(1= (o) =7 @) (@)

+

Vit (Hz (r=n"(2))? ) 0" () (=(7 =7 (@)n" (2) = (L+2) (1 — 0" (2))n; (@) + (1 +2)5* (2)0; (2))
2
2(1—(1+a)(r—n(2)n ()
Using in the above expression results in an equation that only involves n*(z) and not its derivative:

Cp@)ar TE@VIFE(—(r @)+ )+ o)

21tz  2(1—n (@) (—n(z)+7)(1+2))
+ (77*(33)+r77*(95) e (~(r@+t i) @ (@)
A(141)3 A= (@) (= () +7)(1+2)” 2VT+a(L—n (z)(=n*(2) +7)(1+2))
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§ L n* (@) (=n* (2)+7) (~(=n* (2)+7)*+ 117 )
n(x)VI+a <<1+x>2 + e e O I
2(1—n*(x)(—n*(z) +7)(1+ )
1
T @VIFE (= @)+ 0 )

e (N (g 1% (2)*(42) (—(=n* @)+ + gz ) 07 (@) (0" (@) +7) () (= (0" (@) +7)°+ 157 )
@) @)+ )+ S S @) 2(1=n (&) @)+ (142)) )

2 (1—n(2)(—* () +7)(1 +2))”

Now, as a — 00, we argue that n*(x) — 0 uniformly. To see this, we make use of Lemma In particular, we

(18)

can write

1
n*(x) :Eq)/ ((T —n*(z)) V1 +:E) 1+z
(a)1
<-o'(857vT+a) Vite
a
where (a) follows from Lemma Noting that & (.857\/1 —l—x) v/1+z is uniformly bounded and thus as
a — 0o, we have that n*(z) — 0 uniformly. Therefore, in the limit as a — oo, becomes

T(24+x)
4(1+x)3/2’

which is positive. Therefore, for large enough a, Claim 1 holds. Bl
Claim 2: There exists 62 such that the optimal effort n*(o?) for o7 > 2 is decreasing.

Proof of Claim 2: Recall that the first-order condition gives us
1
' (z) = —@'((r—n*(@))Vi+z)Vita.

Notice that n*(z) appears on both sides of the above equation, and we are interested in evaluating its

derivative n:(x). In this regard, we take the derivative of both sides of the above equation yields

(o) =0 ({7 = @)WVIF2) (“n@VTFa+ (10 ) VT s

1
2Ttz
Simplifying the above expression and using ®” (y) = —y®’(y) results in
—(r— n*(x))2 Vitr+ (1+x)71/?
e — (@) (L + 2)7
w() (3 (=0 @)+ 5
Tl @F —r @)1+

(a) —1l724 1.2
< 77* (l‘) _ 8 16"

1
2v/1+zx
+0'((r —n*(2))vV1+x)

. 1
() 25

<0,

1
2
where (a) follows by taking x large enough so that ﬁlz < g and n*(z) < min{m, zr.n

We now proceed with the proof of the theorem. Similar to the proof of Theorem [I} we need to show that

for large enough z, we have f’(x) > 1 where
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and

n*(x) =argmax1—®((r —n)vV1+z) — gnz.

>0 2

The derivative of f(x) can be written as

b (7~ (VI D) (~n@VIT 2+ (7= (2)) 5 )
—a((r—(a >>\/1Tx>)"“
(a) 0" (T —1*( \/m( 2\/1?)

) Pb(l—@(h—n*(m))ﬁ))b“

G GO B

= P21+ 2)® (71— (@) VT+ )
(T = @)VIFa)"*2(1+a)" @
- 2Pbab ()b

where (a) follows from invoking Claim 2 for large enough z, (b) follows from 1 — ®(t) < q>/t(t), (c) follows

from , and (d) follows from the fact that for large enough x, n*(x) goes to zero. B

Proof of Proposition [6]

Fix an instance where 02 < co. From Lemma |§| the first-order condition for the optimal effort is
1
77*(0'2):E@’((T—77*(0'2))\/14-0'2)\/1-‘1-0'2. (19)

For any fixed o2, if n =0, then the RHS is positive, and hence this does not satisfy the above equation.
Therefore, n*(02) > 0.

On the other hand, since n*(02?) < 0.857 by Lemma m, the RHS of is upper bounded by
%@’(0.157‘\/1—1—7) V/1+ 02, which approaches 0 as 62 — oc. Therefore, lim,_,., 7*(c?) =0. B

Proof of Proposition [7]

The sequence of noise variances are {32}, such that
or=af(6))+(1—a)s; forallt,

where f(02%) = same as the baseline model. Therefore, the convergence properties of the sequence

1
Pb.g(r;02)b>

{52}, are the same as the original sequence. H

Proof of Proposition

First, suppose M < 2. Then f(x; P,7) intersects the line y =z once at © = min{M, 2}, as seen in the left
plot of Fig. [f| Therefore, there is one active steady state at min{M,o2}. Next, assume M > &2. Then, the
last intersection of f(z; P,7) with y = occurs at £ = M (as seen in the right plot of Fig. @, and this is a
stable steady state. Hence in this case, there are two active stable steady states at o2 and at M. The proof

of the dynamics follows from the same reasoning as Theorem (1| l
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Appendix D: Alternative Update Rule: Feature Informativeness

We present a microfoundation that motivates the noise update rule (2) in Section

Suppose O, € R* represents k € N different features about the applicant. However, only one of these features
is informative about the applicant’s skill, represented by Z € [k]. However, the firm does not know Z. The
observation O, takes the form:

(St+57€1’--~,5k—1) le::l,

(81,5,54‘(5,...78;6,1) leZQ,
Ot: .

(81,62,...,St+(5) le:k,

where § ~ N'(0,0%) and €1, ...,e,_1 ~N(0,1+0?) independently, for some parameter o > 0. We still assume
that S; ~N(0,1). Note that each element of O, has the same distribution, which is A'(0,14 o).

Belief and dynamics. Let p,(j) € [0,1] be the firm’s belief at time ¢ on the probability that j is the
informative feature, Z = j. We assume that Z is drawn uniformly at random from [k], and hence p;(j) =1/k
for all j € [k]. At time ¢, using the current belief (p,(j));c(x), the firm computes the inferred skill E[S, | O]
for each applicant and hires them if and only if E[S, | O,] > 7. Once an applicant is hired, the firm gets to
observe their true skill, S;. Then, the firm uses the observations (O;, S;) for all hired applicants and uses this
to update their belief on which feature is informative for the next round, (p;41(j));eqx)-

We show that the update rule given by approximates the dynamics resulting from the above model.

PROPOSITION 10. At round t, there exists constants c1,ca > 0, b(p,) > 0 which depends on p.(j), and
a € (0,1) such that for any €1,e3 >0 and § € (0,1), there exists an ng such that if n >ng applicants are hired
at time t, then ®, 1 = N(0,0?%), where with probability at least 1 — 4,

026<c+ “ —€9,C1 + “ —|—e>.
P Ib(p) (ate)r T T T b(p) (a—e)r

Relation to . The dynamics of the above feature informativeness model is approximated by the update

rule in , where we interpret Pg,_; as the number of applicants hired, n. By doing so, we are simplifying
two aspects. First, we are considering a deterministic version of the underlying stochastic system (i.e., we
assume €; = €3 = 0 in Proposition . Second, we replace c¢(p,) with a constant ¢z, which implies that the
learning of Z does not accumulate over time. This is analogous to the assumption in Section[2] that the noise
is only a function of the hires in the previous time step; we assume the firm learns how to evaluate applicants
at time ¢ from the those hired from time ¢ — 1, but the firm does not leverage its learnings from time ¢ — 2
or further back.

We next provide the proof of Proposition [I0] and that of Theorem [7}

Proof of Proposition

Fix a round t. Let n be the number of hired applicants at round ¢, and let (O;, S;):e[,) be the observations
and skills of these hired applicants. Given the prior belief (p,(j)) e[, the posterior belief for Z can be written
as:

)P (00, 8)is | Z =)

O = P (0050 17 =7)
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1

pe(57) PUOLSOE, 12=5")
1+Z’ Li'#3 pe(3) P((0:,5:)1,12=7)

1
TS 2ea) exp (—log An(j, "))

where A, (j,5') = %5:5:;/)) is the likelihood ratio of the observations under Z = j and Z = j’. Using

the independence of signals across different applicants, we can write log A, (4,5') as

OZ,S|Z ])
log A, ( Zl g OZ,S 7= j)

Let j* € [k] be the true value of Z. We can use the law of large numbers to write

P(075|Z=J')>

li A LE ~ 1
m (4, 3") (0.8)~P(-,-12=5%) Og<P(O,S|Z:j')

n—00

Therefore, for any €,0 > 0, there exists an ng such that if n > ny, %An (4,4’) is within € of its expectation
with probability at least 1 — 4.
We now evaluate the expectation on the right hand side, considering three cases. Denote by P; the

distribution of (O,.S) when Z = j. First, suppose j = j* and j’ # j*. Then, we have

E g (PLOS1Z=D N (p
(0,8)~P(--|z=5*) 108 P(O S|Z=j’) = KL( J

) >0,

where Dxr, is the Kullback—Leibler divergence. Similarly, if 7' = j* and j # j/, then

P Z =]
EOSNPHZ:'* log M :—DKL(P*||P1)<O
(0,8)~P(-,:|Z2=5*) P(OS|Z:]’) J J

Lastly, if j, 5’ # j*, then

P(O,S|Z:j)> o

Eco.sreiz=) |log (P(OS|Z:;)

This is because if Z = j*, and j, j’ # j*, then the j and j’th entries of O is pure noise, and these entries are inde-
P(0,5|Z=j)
( P(‘j,slzij’)
0',8'|1Z=j
Forsz=r) = /0

pendent and have the same distribution. Therefore, for any realization of (O, S) where the ratio
corresponds to a/b, there is a realization (0, S”) with the same likelihood where the ratio
These two samples cancel out to 0, and this occurs for all samples.

Let D = Dxy, (P;+||Py) >0 for j’ # j*. Fix e € (0, D) and § > 0. There exists an ng such that if n > 0, the
following two expressions hold with probability greater than 1 —§. First, if j = j*, then

1 1
20
Pl e <1+0< ><eD+e>n’1+cy<pt><eDe>n>’ 2
where C;(p) =30, ., 290 Second, if j # j*, then

1
1+ pt(d) (eD e)n.

pt(3")

per1(d) < (21)
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We now consider the distribution of E[S; ;1 | O;+1]. When the firm observes O, 1, the inferred skill can be

written as
k
E[Si1]0i1] =D E[Sis1 | Oup1, Zip1 = jIPr(Zis1 = j | Oup)-
j=1

Since the distribution of O;4; is equal under any value of Z, .1, we have Pr(Z,11 =j | Oty1) =Pr(Ziy1 =

7)) =pi+1(7). If Oi41(j) is the j’th element of O, 1, then

- Ori1 ()
B[S | O] =) Pt+1(j)#102-

=1

Since O, 11(j) ~N(0,1+ 0?), the distribution of E[S,; | Oy41] is then
1 )
E[Se+1[Owa] ~ N | 0, 102 ZPt+1(])2
j

Therefore, we need to show that v= ﬁ Zle pii1(7)? has the form stated in the result.
Consider the sum Zle per1(4)?. For j # j*, we have
1
(1+ L116)) (eDfe)n)Q.

pt(3")

pes1(j)? <

Note that e?~¢ > 1, and hence the term (e”~¢)" grows exponentially large in n. Therefore, p,;1(j)* — 0 as
n — 00, and hence this term can be incorporated into e;. For j = j*, we have

1
o
pe0) S 056 (e ) + Gy (e B

In the denominator, the second term represents the expression c(p;)(a — €1)", where c(p;) = 2C;(p:), and

a = e~ P. The third term is negligible compared to the second term for large n, and hence can be incorporated

into €;. This shows the upper bound o2 <c¢; + + €2. We can use the same analogous arguments

ca
1+c(pt) (a—er)™

to show the lower bound, and this proves the desired result.

Proof of Theorem [T
Recall that the distribution of E[S, | O;] takes the form :

E[S,|O,]~ N <0,c1 + CQ) :

14+ c3afa—1
First, we assume ¢; = 0. Let 7, = b a”%-1. We will characterize how the term v, changes over time. At
time ¢, the proportion of the population hired is

o Ca 1 -
q. = Pr (N(O’l—l—’y ) >T> =1 @(T\/1+’yt),

t

T

where 7= Nt Let w(x) be the function that maps the 7, value from one time step to the next, which takes

the following form:
’LU(ZII) :b'ap.<17q>(7—‘/l+w)). (22)

Our goal is to understand how w(x) behaves in relation to y = . If w(z) > x, then the -, value increases,

while if w(z) <z, then the -, values decreases. w(x) =z is a steady state.
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We take the derivative of w(z):
w/(:v):b~1oga-aP‘(17¢(%\/m)) ‘P (—¢p(7V1+42x)) -7 2(1—|—x) 172 (23)
_ biPlog(1/a) o (1= (FvTEe)) ~p(FV1+7z) (24)

2 Vi+zx

It is easy to see that w’(z) is non-negative for all x > 0. We define the space of parameters © € (0,1) x Ry

O ={(a,b) : b>B, exp(—b) <a<b “}

for constants B > 0,C > We show that an instance with these parameters have two distinct steady

1- <I>( )"
states.

PROPOSITION 11. If (a,b) € O, there exist two points x1 < xo where w(x;) = x;, and there exists a § >0

such that w(x) > x; for x € (x; — 6,2;) and w(x) < x; for x € (x;,z; +96) for both i=1,2.

Proposition [11]says that there are at least two intersections of w(z) with y = 2 where w(x) approaches from
above (w(x) > x right before the intersection, but w(x) < x right after the intersection). These intersections
denote a stable steady state, and this result says that there are at least two distinct steady states.

We will show that there is a parameter regime for a and b where the following conditions hold:

(a) w(0)>0.

(b) w(0) <0.01.

(¢) w'(x) <1/2 for all x €[0,0.1].

(d) w(0.98b) > 0.99b.

We now show that properties (a)-(d) hold when (a,b) € ©. Property (a) holds for any a,b > 0.

Property (d). Let By >0 such that for all b> By,

a>0.99T TV ToT (25)

Such a Bj exists since a > exp(—b), and the RHS of tends to 0 super-exponentially. Then,

w(0.98b) =b- gl 2(FVIT0.985)
1—®(7/IF0.98b)
Z b-0.991-2(#v1+0.980)

=0.990.

Property (b). Since C' >2- there exists By > 0 such that if b > By,

1 0.01 1‘1’“
< | = .
(b) ( b )

w(0)=b-a'~*@

o(7)
0.01 =505
<b-
- < b )

0.01.

1— <I>()’

Then, property (b) follows:

IN
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Let B=max{B, Ba}.
Property (c). Since a > exp(—b), then log(1/a) <b. Using this and the upper bound on a, we have

_ b7 log(1/a) a(k@(%m)) -p(TV1+1)

w'(x) 5 N
2 o0 ey

(26)

For all z € [0,0.1], the first term in is bounded below and above by a constant, and the expression
(1-9 (%\/m)) is also bounded below and above. Then, one can choose C large enough so that the entire
expression in is less than 1/2 for all b> B.

Proof of Proposition [11. We provide the proof of Proposition given that the above conditions hold.
(a) states that the function starts positive, so w(z) starts above y = z. Combining (b) and (c) implies that
w(0.1) <0.001 4 30.1 < 0.1. Therefore, there is an intersection of w(z) and y = at some point z; € (0,0.1).

Next, we will show that the second intersection x5 is close to b. Note that w(x) <b for all z > 0. Since
w(0.98b) > 0.99b > 0.98b, w(x) is larger than y =2 when x = 0.98b. But when = > b, we have w(z) <b. So
there must be an intersection of w(z) with y =2 for 5 € (0.98b,b). O

Lastly, Proposition [[T] assumes that ¢; = 0. Since the impact of ¢; on ¢, is continuous, it also impacts the
function w(s) in a continuous fashion. Therefore, if ¢; > 0 is small enough, the steady states will remain the

same.
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