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We study a dynamic model of interactions between a firm and job applicants to identify mechanisms that

drive long-term discrimination. In each round, the firm decides which applicants to hire, where the firm’s

ability to evaluate applicants is imperfect. Each applicant belongs to a group, and central to our model is

the idea that the firm becomes better at evaluating applicants from groups in which they have hired from

in the recent past. We establish the firm’s initial evaluation ability for each group to be a critical factor in

determining long-term outcomes. We show that there is a threshold for which if the firm’s initial evaluation

ability for the group is below the threshold, the group’s hiring rate decreases over time and eventually

goes to zero. If the group starts above the threshold, then the hiring rate stabilizes to a positive constant.

Therefore, even when two groups are identical in size and underlying skill distribution, a marginal difference

in the firm’s initial evaluation ability can lead to persistent disparities that exacerbate over time through

a feedback loop. Importantly, the dynamic nature of our model allows us to assess the long-term impact

of interventions, specifically, whether an improvement is sustained even after the intervention is lifted. In

this light, we show that drastic short-term interventions are more effective compared to milder long-term

interventions. Additionally, we show that smaller groups face inherent disadvantages, requiring a higher

initial evaluation ability to achieve a favorable long-term hiring outcome and experiencing lower hiring rates

even when they do.

1. Introduction

The application of machine learning algorithms in decision-making processes has expanded into

many high-stakes areas, including hiring, lending, healthcare, and criminal justice (Barocas et al.

2023). Given the significant impact these decisions can have, important concerns have been raised

regarding possible harms due to algorithmic biases. For example, a machine learning tool used

by Amazon for recruiting was found to explicitly discriminate against women (Dastin 2022), and

Obermeyer et al. (2019) showed that an algorithm used to allocate hospital resources were leading

to inadvertent discrimination against African American patients.

These examples and others have drawn significant attention to the problem of algorithmic

bias, which has inspired a growing literature on designing “fair” algorithms. Common algorithmic
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approaches include enforcing parity constraints across groups such as demographic parity (e.g.,

Zemel et al. (2013)), which mandates equal selection proportions across groups in decisions like

hiring or college admissions, or ensuring that algorithms are “blind” to sensitive attributes such as

race and gender (e.g., Dwork et al. (2012)). Another prominent approach focuses on ensuring that

predictions are properly calibrated across groups (e.g., Hébert-Johnson et al. (2018)).

These approaches define “fairness” in the context of a one-shot setting (e.g., a prediction prob-

lem). However, in reality, algorithmic systems operate within dynamic contexts, and the dynamics

can play a key role in perpetuating undesirable disparities. Consider the following examples.

1. Algorithmic hiring: A company’s algorithmic hiring tool is trained on historical data from

a workforce dominated by a specific group (e.g., a specific gender, graduates from a particular

college, etc.). The algorithm is more effective at evaluating applicants from this group, leading to

further inclination to hire from this majority group in the future.

2. Predictive policing: Predictive policing systems forecast crime in specific neighborhoods, lead-

ing to concentrated patrols in those areas. Crimes detected through heightened patrols are fed back

into the system, further reinforcing the designation of these neighborhoods as high-risk.

3. Loan denials: A bank uses an algorithm to predict the default risk of loan applicants, which

predicts that groups with lower socioeconomic status are at high-risk. Their loan applications are

denied, and as a result, these groups lose opportunities to invest or create businesses, perpetuating

their economic disadvantage.

These examples describe undesirable feedback loop mechanisms that can arise in several appli-

cations, and such issues cannot be formalized under static models. This suggests the need to study

dynamic models that can capture delayed impact and feedback effects. This is the motivation for

this paper, which focuses on the hiring application described in the first example.

Discrimination in hiring. Labor markets have consistently grappled with disparities that have

persisted over time. In the United States, both gender and racial pay gaps have not meaningfully

improved over the last couple of decades1. Our paper proposes a dynamic model that formalizes a

feedback loop mechanism that explain the persistence of discrimination, and this model can then

be used to provide insights on how to mitigate discrimination.

We build upon the literature on statistical discrimination, which aim to explain how differences

in labor market outcomes between groups can arise even when firms act rationally in their hir-

ing process. Specifically, we extend the canonical static model of Phelps (1972) by incorporating

1 The hourly earnings for black men were 73% of white men in both 1980 and 2015
(https://www.pewresearch.org/short-reads/2016/07/01/racial-gender-wage-gaps-persist-in-u-s-despite-some-
progress/). The gender pay gap was 80% in 2002 and 82% in 2022. (https://www.pewresearch.org/social-
trends/2023/03/01/the-enduring-grip-of-the-gender-pay-gap/)
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dynamics inspired by machine learning practices. Our model studies a firm making hiring decisions

over time from applicants who are divided into groups. The key idea of our model is:

A firm is better at evaluating applicants from groups it has hired from in the recent past.

This concept is formalized through a noisy signal observed by the firm for each applicant: the

signal is less noisy for groups in which the firm has recently hired from. This dynamic reflects the

nature of machine learning systems, where more data enhances predictive accuracy, but older data

becomes stale and less relevant.

Under our model, we evaluate the long-term hiring rate for each group. Our main result is

that there are multiple distinct long-term outcomes that can arise, and which one emerges simply

depends on the firm’s initial evaluation ability for the group. That is, two identical groups may

converge to completely different hiring rates if the firm initially had a slightly better ability to

evaluate applicants from one group over the other. The resulting dynamics illustrate that historical

disadvantages can persist and exacerbate over time through a feedback loop, leading to long-term

disparities.

Our dynamic model also allows us to formalize the idea of interventions that are successful in

the long term. Specifically, we say that an intervention that aims to help a disadvantaged group is

successful in the long term if, compared to pre-intervention, the outcomes of the group improves

after the intervention is lifted. For example, an intervention that enforces a temporary boost in

the hiring rate of a group may improve outcomes in the short run, but this may not persist once

the intervention is lifted. Our model and results suggest that a successful intervention in the long

term should be drastic, even if it is in place for a short period of time.

This paper helps to bridge the literatures of statistical discrimination and algorithmic fairness.

We extend classical models of statistical discrimination by introducing dynamics that shed light

on how disparities evolve over time. On the algorithmic fairness front, our paper provides a frame-

work that formalizes how algorithmic performance shifts with data availability influenced by past

decisions. This framework can be used to evaluate long-term outcomes, which can be applied to

settings beyond the hiring context.

Model summary. We introduce a dynamic model of a selective labor market composed of a

firm and applicants, where applicants are clustered into “groups” (based on gender, race, college,

etc.). For convenience, this paper uses terminology related to the labor market (a firm that hires

applicants), but the model also readily applies to an admissions problem (e.g., a college that admits

applicants). Each applicant has a true “skill”, a scalar value, and the firm hires all applicants

whose skill is expected to be above a fixed threshold. The firm’s evaluation ability is imperfect

and dependent on the observation of a noisy signal of each applicant’s skill, where the variance of

the noise is group-specific and dependent on past decisions. Specifically, we assume that the noise
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variance of the signal is a decreasing function of the number of hires from that group in the previous

time step. This dynamic models the idea that a firm’s ability to evaluate applicants from a group

improves with recent hiring from that group, as past hires provide both performance feedback and

contribute to future hiring decisions. This feedback loop, however, relies on recent hires, as older

data and employee turnover diminish its impact over time. Under these dynamics, we evaluate how

the hiring rate (percentage of applicants hired) for a group evolves over time. If the hiring rate

eventually converges, we call this a steady state. We call an “active” steady state one where the

corresponding hiring rate is positive, which implies that a constant fraction of applicants from that

group are consistently hired. An “inactive” steady state is one where the hiring rate is zero.

1.1. Summary of Results

We now summarize our main results.

Convergence to two steady states. We show that there are exactly two possible steady state

outcomes that a group can converge to, where one of them is active and the other is inactive. We

characterize which of these steady states arise as a simple threshold on the initial noise variance.

If the initial noise variance is below the threshold, the group converges to the active state, and

otherwise, they converge to the inactive state. Hence, two groups that start with a small difference

in their initial noise variances may converge to two completely different long-term hiring outcomes,

even if their underlying skill distributions are identical.

Group size. Next, we show that groups of smaller sizes are fundamentally disadvantaged in two

ways. First, the noise variance threshold needed to converge to the active steady state is smaller

for the smaller group. Second, even if two groups are both in the active steady state, the percentage

of applicants hired (which normalizes for group size) will be lower for the smaller group.

Interventions. For a group to converge to the active steady state, the noise variance must be

reduced below a critical threshold. Once this threshold is crossed, the group benefits from a self-

reinforcing feedback loop that sustains improved hiring outcomes even after the intervention ends.

Thus, a sufficiently drastic intervention that substantially lowers the noise variance can lead to

long-term improvements, even once the intervention is lifted. In contrast, milder interventions

that do not achieve this threshold have only temporary effects and fail to produce lasting change.

Notably, we show that enforcing a specific form of demographic parity (equalizing hiring rates

across groups) is always sufficient to trigger convergence to the favorable steady state, if one

exists. Specifically, the equalized hiring rate must match that of a group in the active state. If this

intervention is unsuccessful, this serves as evidence that the favorable state does not exist, and

hence no intervention that decreases the noise variance can be successful.



Baek and Makhdoumi: The Feedback Loop of Statistical Discrimination
5

Competition across groups. We extend our model to one where two groups are competing for

a limited number of positions at a single firm, and we characterize which steady states can arise

under this model. We first show that if the initial hiring rate for one group is sufficiently small,

the resulting steady state will be inactive for that group, and the firm will eventually exclusively

hire from the other group. We show that such an exclusive steady state can arise even when initial

hiring rates are equal, under uneven group sizes. When the total hiring capacity is small enough,

then the smaller group will converge to the inactive steady state even if it started with the same

hiring rate as the other group. On the positive side, we show that if the total capacity is large

enough and the initial hiring rates have a small discrepancy, the system will converge to an active

steady state for both groups.

We consider an extension where the underlying population size increases, which intensifies com-

petition. We show that this exacerbates disparities: the group with higher evaluation ability secures

a larger share of hires as the population grows.

Simulating a practical algorithmic hiring system. To complement our theoretical analysis, we

conduct a simulation study in which a firm deploys a realistic machine learning (ML) based hiring

system over time. In the simulation, each applicant has a feature vector, and their skill is a linear

function of the features. The firm uses past hiring data to fit a predictor of their skill to make hiring

decisions. The simulation results validate several key qualitative features of our model: the existence

of two distinct steady states (active and inactive), the critical role of initial evaluation ability in

determining long-run outcomes, and the disadvantage faced by smaller populations. Specifically,

we show that the hiring rate converges either to zero or to a positive constant depending on the

firm’s initial estimate quality, mirroring the bifurcation behavior predicted in our theoretical model.

These results highlight that the feedback loop dynamics we model are not merely a theoretical

artifact, but persist under more realistic settings with noisy prediction and limited feedback.

Extensions. We consider several modeling extensions to check the robustness of our main results.

We consider an extension where applicants can improve their skills by exerting effort. Exerting

effort incurs a cost, and applicants exert the effort level that maximizes the chance they are hired

minus the effort cost. We show that the results regarding the existence and convergence to two

steady states continue to hold in this extension. Next, we also consider an extension of the model

in which the noise variance can depend on more than one previous time step, as well as another

variant where we impose a cap on the maximum value that the noise variance can take. Lastly,

we consider an alternative noise update rule which is motivated by a model wherein which a firm

observes multiple features for each applicant, and the firm aims to learn which feature is informative

of the applicant’s skill. We show that our main results hold under these extensions.
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1.2. Implications

Persistence of historical discrimination. Our main result is that there are distinct steady states

that are associated with drastically different hiring outcomes, and the outcome that arises depends

critically on the firm’s initial evaluation ability for each group. This mechanism helps explain

real-world patterns, such as the persistent under-representation of certain demographic groups in

leadership roles (Ospina and Foldy 2009, Krivkovich et al. 2024, Nagpaul 2024), or the continued

dominance of graduates from specific elite institutions in competitive industries (Gerber and Che-

ung 2008, Witteveen and Attewell 2017). It highlights how historical disadvantages, reflected in

initial evaluation disparities, can persist and even worsen over time, leading to entrenched long-term

inequalities in hiring outcomes without any explicit bias in the firm’s decision-making process.

Need for drastic interventions. Consider an intervention whose goal is to help a disadvantaged

group. For example, an intervention may increase the number of applicants hired from the group, or

a firm may spend more effort on evaluating the applicants to decrease the noise (e.g., by conducting

more interviews). We say that an intervention is successful if the group converges to the active

steady state. Our convergence result shows that a successful intervention must cause the noise

variance of that group to fall below a critical threshold. This highlights the importance of drastic

interventions. If an intervention is able to reduce a group’s noise below the critical threshold, the

group will naturally converge to the active state, maintaining its improved status even after the

intervention ends. In contrast, mild interventions, even those in place for a long time, that do not

lower the noise variance below the threshold are ineffective in the long term. Such interventions

might temporarily boost hiring while they are in effect, but fail to create the self-reinforcing

dynamics necessary for sustained improvement, causing the group to fall back to the inactive state

when the intervention is lifted.

Our results can provide insight into the (in)effectiveness of real-world interventions. For example,

the recent United States Supreme Court decision in Students for Fair Admissions v. Harvard in

2023 banned the use of affirmative action in college admissions, effectively removing an intervention

that had been in place for decades. Preliminary post-ban data2 indicate that Black enrollment

has declined at three-quarters of colleges, with varying impacts across institutions. Applying our

framework to this context, one possible interpretation is that affirmative action, while impactful

during its implementation, may not have led to a state where an improvement can be naturally

sustained. Of course, we acknowledge that this is a simplification of a highly complex issue, and

our model captures one of many aspects of the broader systemic forces at play.

2 https://edreformnow.org/2024/09/09/tracking-the-impact-of-the-sffa-decision-on-college-admissions/
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Smaller groups are inherently disadvantaged. Our model reveals that smaller groups face inher-

ent disadvantages in achieving favorable long-term hiring outcomes. Specifically, smaller groups

require a higher initial evaluation ability to converge to the active steady state, making them more

vulnerable to falling into the inactive (zero-hiring) state. Moreover, even when both large and small

groups achieve active steady states, the hiring rate for the smaller group remains lower due to the

weaker feedback loop generated by fewer hires. This stands in contrast to the common perception

that parity in hiring rates across groups is the desirable or “fair” outcome—a notion often formal-

ized through demographic parity constraints in the algorithmic fairness literature (e.g., Calders

and Verwer (2010), Edwards and Storkey (2015), Zafar et al. (2017), Agarwal et al. (2018), Zemel

et al. (2013)). Our results suggest that such parity may not naturally emerge even in the absence

of bias, when group sizes differ.

1.3. Related Literature

As mentioned, our paper builds upon the literature on statistical discrimination. We describe the

most relevant works from this literature, and we refer the reader to the excellent surveys of Fang

and Moro (2011), Lang and Spitzer (2020), and Onuchic (2022) for a comprehensive literature

review.

Multi-armed bandit models. Conceptually, our paper is closest related to recent works that study

discrimination using multi-armed bandit models (Li et al. 2020, Bai et al. 2022, Komiyama and

Noda 2024). These models capture how a firm’s evaluations improve as a function of past hiring,

which aligns with our central premise that hiring from a group enhances the firm’s ability to assess

future applicants from that group. A key distinction is our work is in treatment of past data:

bandit models assume that all past data remains relevant indefinitely, and we assume that only

recent data informs the firm’s current evaluation ability. In our model, the firm must consistently

hire from a group to maintain a low noise level when evaluating its applicants. This difference

yields distinct insights. Specifically, our model differentiates between the timing and intensity of

interventions: hiring 100 applicants in one round is not equivalent to hiring one applicant each

over 100 rounds. In contrast, the cumulative nature of learning in bandit models makes these two

interventions equivalent. Moreover, our framework highlights that reducing the noise variance is

the key to achieving lasting improvement. This can be achieved not only through hiring more

individuals from a group, but also through more accurate evaluations (e.g., by spending additional

effort during interviews).

Relation to Phelps Model. Next, our paper is also closely related to papers that study the impact

of heterogeneity in information quality as a mechanism for statistical discrimination, as in the

seminal work of Phelps (1972), and extensions (e.g., Aigner and Cain (1977), Lundberg and Startz
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(1983)). The model in our paper can be seen as a dynamic generalization of Phelps (1972); our

work relies on the same source of discrimination (heterogeneous information quality), but we focus

on studying how discrimination evolves over time. Other than being a dynamic model, a second

departure of our work from the Phelps model is that we assume the firm makes binary hiring

decisions, rather than wage decisions. This is a crucial and necessary feature of our model, since

the idea that “firms get better in hiring from those they have hired from before” is only applicable

when considering hiring decisions (and not when the firm hires everybody and only makes wage

decisions). Studying binary decisions is the natural formulation of the problem from a machine

learning perspective, since this corresponds to the ubiquitous classification problem.

Cornell and Welch (1996) studies a variation of Phelps (1972) that studies information hetero-

geneity across groups of applicants, but they consider hiring decisions rather than wage decisions

(as in this paper). They assume that for each applicant, a firm receives a certain number of inde-

pendent signals of quality, where the number of signals they receive is a function of their group.

They assume the firm only hires one applicant, and they show that the hired applicant is more

likely to come from the group in which the firm has more information about, and this probability

approaches 1 when the number of applicants goes to infinity. Under multiple generations, they cal-

culate the expected duration until the first time the hired applicant comes from the disadvantaged

group. Although Cornell and Welch (1996) comments on the persistence of discrimination over

time, they do not model the dynamics of how the underlying hiring mechanism evolves over time,

which this paper focuses on.

More recently, Emelianov et al. (2022) studies a static model where the variance of the noise in

the applicant’s signal differ across groups. They study two variants in which the decision maker

either knows or do not know the variance, and show that both can lead to discrimination. They

also consider interventions similar to demographic parity and analyze its effects. Our paper can be

seen as a dynamic generalization of this work.

Relation to Arrow Model. Our paper is also related to the seminal model of Arrow (1973), which

introduces a model where groups are ex-ante identical, applicants make costly skill investment

decisions, and firms provide higher wages to those with the investments.

The model is shown to have multiple equilibria, and hence, discrimination is explained as different

groups arriving at distinct equilibria (called “coordination failure”). This formalizes the idea of

“self-fulfilling stereotypes” — if a firm believes that a group will not make skill investments, the

group, correspondingly, will not be incentivized to do so.

At a high level, our results have a similar flavor to that of the Arrow model. Specifically, we

show that our model exhibits multiple long-term steady states, and this can be thought of as

analogous to multiple equilibria in the Arrow model. The main distinction of our work is the
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underlying mechanism of discrimination; importantly, our work does not rely on applicants to make

any decisions. The results of Arrow (and extensions such as Coate and Loury (1993), Moro and

Norman (2004), Levin (2009), etc.) rely on coordination failure as the source of discrimination,

where applicants from different groups make different skill investment decisions. Contrastingly, our

work shows that a similar phenomenon of two ex-ante identical groups ending up in two distinct

outcomes can occur, without relying on any decisions made by applicants. Another distinction is

the difference in the technical definition of a “steady state” (this paper) and an “equilibrium”

(Arrow model), though conceptually we think of these as similar ideas.

Dynamic models. There are papers that study dynamic models of statistical discrimination,

where the dynamics considered by these papers model a fundamentally different idea than the

dynamics that we study. Blume (2006) and Levin (2009) develop dynamic models based on Arrow

(1973) where firms maintain beliefs over the worker’s skill, which results from costly investments.

Fryer Jr (2007) and Bardhi et al. (2020) study the dynamics of worker’s employment over their

career. Bolte et al. (2020) develop a dynamic referral-based hiring model where homophily induces

persistent disparities.

Fairness in machine learning. Another closely related area is the recent but large literature on

fairness in machine learning; see Barocas et al. (2023), Chouldechova and Roth (2020), and Mehrabi

et al. (2021) for an overview of this literature. Our model studies a firm’s decision of whether to

hire an applicant or not, which is akin to the classification problem in machine learning. This is

in contrast to most of the models of statistical discrimination, where the decision is related to

setting wages. The “classical” definitions of fairness in machine learning are often motivated by the

hiring or school admissions applications (e.g., Barocas et al. (2023), Chouldechova and Roth (2020),

Mehrabi et al. (2021)). Within our model, one can view such fairness definitions as a short-term

intervention. There is also a collection of papers that bring up critiques of the classical fairness

definitions (e.g., Bao et al. (2021), Kasy and Abebe (2021), Corbett-Davies et al. (2023)) as well as

works that posit economic-driven frameworks for fair decision-making (e.g., Kleinberg et al. (2018),

Chohlas-Wood et al. (2021)) — our work has a similar motivation to this stream of literature.

More directly related to our work are papers that study a dynamic setting and evaluate long-

term outcomes. Liu et al. (2018) show that even in a one-step feedback model, imposing a fairness

constraint does not necessarily lead to an improvement and can even potentially cause harm.

Hashimoto et al. (2018) study a dynamic model in which those who experience a high error are

likely to leave the system, and they show that repeated empirical risk minimization can lead to

exacerbated disparities over time. Liu et al. (2020) study a dynamic model where users invest effort

as a best response to the current system, where they focus on how the lack of realizability can

lead to an unfair equilibrium outcome. Fu et al. (2022) study how imposing an equal opportunity
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fairness constraint can reduce a firm’s incentive to invest in better predictions, which can make all

groups worse off.

Algorithmic hiring and operations. Our paper also relates to the growing operations literature

that study models and algorithms for hiring or school admissions. Garg et al. (2020) study the

impact of using standardized tests for college admissions when different groups of applicants have

unequal access to the test. They extend the model of Phelps (1972) to multiple features, testing

costs, and competition across schools. Farajollahzadeh et al. (2025) study a two-stage hiring model

with information asymmetry across groups, where they show that the Rooney Rule intervention

may fail to improve hiring outcomes, especially when firms compete to hire from a common pool.

Several other papers study the effectiveness of interventions or mechanisms for hiring (Kleinberg

and Raghavan 2018) and school admissions (Faenza et al. 2020, 2022). A line of work studies

the impact of algorithmic monoculture, where multiple firms use a common algorithm to score

applicants to make interview or hiring decisions (Kleinberg and Raghavan 2021, Peng and Garg

2024, Baek et al. 2025). Aminian et al. (2023) develop algorithms for equitable hiring in a sequential

setting, and they show that when signals can be biased, incorporating fairness constraints can

improve long-term outcomes. Salem and Gupta (2023) develop algorithms for sequential hiring

where information about applicants are given as a partial order, modeling the idea that not all

applicants are directly comparable. Purohit et al. (2019) and Epstein and Ma (2022) study the

sequential hiring problem under uncertainty in offer acceptances.

The rest of the paper proceeds as follows. Section 2 presents our model. Section 3 characterizes the

learning outcome and the impact of the initial noise and the group size on it as well as interventions.

In Section 4, we extend our model to one where two groups compete for a limited number of spots.

Section 5 contains simulations that mimic an ML-based system that makes hiring decisions over

time. Section 6 provides several extensions and robustness checks for our main results, including an

extension of the model where applicants can exert effort. Section 7 concludes, while the Appendix

presents the omitted proofs from the text.

2. Model

We consider a multi-period labor market of a firm that hires from an applicant pool. Each time

period t= 1,2, . . . represents a different pool of applicants, whereas the firm stays the same across

periods. For example, time periods can be years, and the applicant pool can be those who are

graduating college that year. The applicants are divided into mutually exclusive groups (e.g.,

graduates from different colleges), and the firm interacts with each group separately. We describe

the dynamics of the interactions between the firm and one group of applicants. In Section 4, we

consider a variant of the model where two groups are competing for a limited number of positions.
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A group at one time period is represented by a continuum of applicants with a total mass of

P > 0, which we refer to as the group size. Each applicant has a scalar skill, and the distribution of

the skill is N (0,1). Let St be a random variable denoting the skill of an applicant drawn at random

at time t.

Observation and hiring rule. At time t, the firm receives an observation Ot for each applicant,

which represents a noisy signal of the applicant’s true skill St. At each time period t, there is

a noise variance σ2
t associated with the group, where a lower noise variance corresponds to a

higher evaluation ability by the firm. The firm observes Ot = St + ϵt where ϵt ∼N (0, σ2
t ) is drawn

independently for each applicant. The firm then computes their belief on the expected value of the

applicant’s skill, E[St |Ot], which we refer to as the inferred skill. We assume the firm is aware of

both the prior distribution of skill as well as the noise variance, hence the inferred skill has the

form:

E[St |Ot] =
Ot

1+σ2
t

.

Then, the firm hires the applicant if and only if E[St | Ot] > τ , where τ > 0 is an exogenous

parameter. We define the hiring rate at time t to be qt = Pr(E[St | Ot] > τ), the percentage of

applicants who are hired.

Noise dynamics. We assume that the noise variance for the next time step updates as

σ2
t+1 =

1

(P · qt)b
, (1)

for some b ∈ R+. That is, the variance is inversely related to the mass of applicants hired at the

previous time step, P · qt. We discuss this modeling assumption in Section 2.1.

Initialization and steady states. Given parameters P and b, a process is initialized with the

initial hiring rate q0 ∈ [0,1], which defines the noise variance at the first time step: σ2
1 = 1/(Pq0)

b.

If the hiring rate for a group converges to a limit, limt→∞ qt = q∞, then we say that q∞ is a steady

state. We say that q∞ is a stable steady state if there exists an ϵ > 0 such that if q0 ∈ [q∞−ϵ, q∞+ϵ],

the process converges to q∞. Otherwise, it is an unstable steady state. We say that q∞ is an active

steady state if q∞ > 0, and we say that it is inactive if q∞ = 0.

Remark 1 (Multiple groups). The model above specifies the dynamics of a single group. If

there are multiple groups, we assume that a firm interacts with each group separately, and hence,

the above process runs independently for each group. Since the firm simply hires everyone whose

expected skill is above the threshold τ , there is no interaction or competition between groups. In

Section 4, we consider an extension of this model where two groups are competing for a limited

number of positions at a single firm, which captures the interaction between two groups.
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2.1. Discussion of Dynamics

The dynamics on the noise variance of the observation represent the salient modeling feature of

our work. The noise variance decreasing in the previous mass of hires formalizes the idea that a

firm is better at evaluating applicants from a group if they have hired more from that group in

the past. We describe two motivating reasons for this modeling decision. First, once an applicant

is hired and becomes an employee, the firm observes their performance and learns about their true

skill. Therefore, the past hires serve as labeled data points that the firm can learn from to evaluate

future applicants (as is also done in Li et al. (2020) and Komiyama and Noda (2024)). Second,

past hires become employees of the firm who often take part in the hiring process, and they will

be better at evaluating those who have a similar background to them (e.g., alumni of a particular

school have a better sense of what a “good” GPA from that school is). Both of these mechanisms

lead to the phenomenon that the firm’s ability to evaluate applicants improves in the number of

hires from their group.

Relatedly, another key assumption of our model is that the noise variance is a function of the

hiring decisions from a finite number of previous time steps, rather than all previous time steps.

Note that for both of the aforementioned motivating reasons, hiring an applicant will not improve

the firm’s evaluation ability indefinitely. This is because the population and the set of desirable

skills are constantly changing, and hence observations from a long time ago are not predictive about

today’s applicants. Moreover, employees who take part in the hiring process do not stay at the firm

forever. For simplicity, we model the noise variance as a function of the number of applicants hired

from that group in the immediately previous time step. In Section 6.2, we consider an extension

where we let the variance be a function of more than one previous round, and we show that the

same results hold.

With respect to the exact functional form of the noise variance update, Eq. (1) is motivated by

the idea that the variance of statistical estimators scales at a rate of O(1/n) (e.g., central limit

theorem), where n is the number of samples. In Section 5, we show that our findings continue to

hold more broadly by conducting a simulation study that mimics a practical hiring system and

avoids making any explicit modeling assumptions about the noise update rule. In Subsection 6.4,

we consider a different functional form for the noise variance update rule, which is motivated by

by a model wherein which a firm observes multiple features for each applicant,and the firm aims

to learn which feature is informative of the applicant’s skill. We show that our findings are robust

and hold under this extension.

3. Steady State Convergence Analysis

In this section, we characterize the set of stable steady states, as well as which steady state arises

as a function of the initial state.
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At time t, given that the inferred skill is given by E[St | Ot] = Ot/(1 + σ2
t ), the distribution of

inferred skill over the population is given by

E[St |Ot]∼N
(
0,

1

1+σ2
t

)
.

Therefore, the proportion of applicants hired at time t is

q(τ ;σ2
t )≜Pr

(
N (0,1)> τ

√
1+σ2

t

)
.

We characterize the dynamics via a function f which maps the noise variance at one step, σ2
t , to

the noise variance at the next step, σ2
t+1. Specifically, let us define the function

x 7→ f(x;P, τ)≜
1

(P · q(τ ;x))b

for x≥ 0 that captures the mapping from a noise variance to the noise variance at the next time

step. This function depends on the group size P and the threshold τ . The map f represents one step

of the process, and hence the entire process is fully specified by repeatedly applying the function

f . Hence, the function f specifying the one-step dynamics can be written as

f(x;P, τ) =
1(

P · (1−Φ(τ
√
1+x))

)b
,

where Φ(x) is the cumulative distribution function of the standard normal distribution.

If f(σ2;P, τ)>σ2, then the noise variance at the next time step is worse (larger) than the current

time step. Conversely, if f(σ2;P, τ)< σ2, then the noise variance at the next time step is better

(smaller) than the current time step. Therefore, understanding the convergence dynamics reduces

to understanding how the function f(x;P, τ) compares to the function y = x. Figure 1 plots an

example of the function f(x;P, τ) as well as y = x. The next lemma characterizes the number of

intersections of f(x;P, τ) and y= x.

Lemma 1. For any P and τ , the function f(x;P, τ) for x≥ 0 intersects with y = x in at most

two points.

We note that the function f(x;P, τ) is not convex in x, which would have been a sufficient condition

to prove the above lemma. To prove this result, we equivalently show that the function v(x) =

x/f(x;P, τ) intersects the line y = 1 at most twice, which we establish by showing that v(x) has

at most one stationary point. The proof of this result (and all other results) can be found in the

appendix.

Using this, our main result characterizes the learning dynamics and the set of stable steady

states.
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Theorem 1. For any given P , there exists τ̄ ∈R+ such that:

• If τ > τ̄ , then there exists only one stable steady state which is inactive.

• If τ < τ̄ , then there exists exactly one active stable steady state and one inactive steady state.

Furthermore, for a given τ < τ̄ , there exists a variance threshold σ̄2 such that any noise variance

σ2 < σ̄2 converges to the active stable steady state, and any noise variance σ2 > σ̄2 converges to the

inactive state.

Figure 1 Function f(x;P, τ) for P = 12, τ = 1, and b= 1. The first intersection of f with y= x represents the

active state, marked as σ2
∗. The second intersection corresponds to the threshold σ̄2 in Theorem 1: if the initial

noise variance is below this value, it converges to the active state, whereas if it is above the threshold, it

converges to the inactive state.

Theorem 1 characterizes the set of steady states as well as the conditions on convergence to

each one. This result establishes that the inactive steady state always exists, and there is at most

one active stable steady state. Since these are unique, from now on, we will refer to these in the

shortened form as the inactive state and the active state, where the latter may not exist.

We let σ̄2(P, τ) denote the variance threshold corresponding to the second bullet of Theorem 1,

where we define σ̄2(P, τ) = 0 if the active state does not exist. In Figure 1, the larger intersection

of f(x;P, τ) and y= x is σ̄2(P, τ). Similarly, we let σ2
∗(P, τ) denote the noise variance at the active

state, where we define σ2
∗(P, τ) = ∞ if the active state does not exist. In Figure 1, the smaller

intersection of f(x;P, τ) and y= x is σ2
∗(P, τ). With this notation in hand, it is worth highlighting

the dynamics of the noise variance evolution. For any initial noise variance σ2 ≤ σ2
∗(P, τ), the noise

variance increases over time and converges to the active state σ2
∗(P, τ). For any noise variance

σ2 ∈ (σ2
∗(P, τ), σ̄

2(P, τ)), the noise variance decreases over time and again converges to the active
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state σ2
∗(P, τ). In contrast, for any noise variance σ2 > σ̄2(P, τ), the noise variance increases over

time and converges to the inactive state. We note that the second intersection, σ̄2(P, τ) is an

additional active steady state, but it is not stable.

We now describe several practical implications and corollaries of Theorem 1.

3.1. Impact of the Initial Noise Variance

Taking τ < τ̄ as fixed, Theorem 1 formalizes the importance of the initial noise variance. The even-

tual steady state of a group is simply determined by the threshold σ̄2, where a group will converge

to the active state if and only if their initial noise variance is below the threshold. Then, comparing

two otherwise identical groups, even a small difference in their initial states (e.g., just above and

below σ̄2) can lead to two completely different long-term prospects, despite their underlying true

skill distribution being identical. Put differently, a group starting with even a small disadvantage

can lead to greatly exacerbated disparities in the long run.

3.2. Impact of Group Size

Next, we evaluate the impact of the group size on the resulting steady state. We show that belonging

to a group with a smaller size can be disadvantageous in two ways.

Proposition 1. Fix τ > 0.

• The noise variance threshold to converge to the active state, σ̄2(P, τ), is increasing in P .

• The proportion hired at the active steady state, q(τ,σ2
∗(P, τ))∈ [0,1], is increasing in P .

First, the threshold that the noise variance needs to be below in order to converge to the active

state is higher for a larger group. Therefore, even if two groups start with the same noise variance,

it may be that the larger group converges to the active state while the smaller group converges to

the inactive state. Second, even if two groups are in the active state, the proportion of those who

are hired (which normalizes for group size) is smaller for the smaller group.

3.3. Interventions: Need for Drastic Measures

It is natural to consider interventions that help a group converge to the active state. Theorem 1

specifies what this intervention needs to achieve: the noise variance associated with evaluating that

group must fall below a critical threshold σ̄2(P, τ). This threshold marks the point at which the

feedback loop begins to positively reinforce itself, enabling sustained improvement in the firm’s

evaluation accuracy and long-term outcomes for the group. Crucially, interventions that fail to

reduce the noise variance sufficiently will only have a temporary impact, as the system will revert

to the inactive state once the intervention is removed.

The exact nature of the intervention can take many forms. For example, one can increase the

number of applicants hired at one time step to decrease the noise in the next time step, as formalized

in the next result.



Baek and Makhdoumi: The Feedback Loop of Statistical Discrimination
16

Proposition 2. If σ2
∗(P, τ)<∞, then there exists q ∈ [0,1) such that the hiring q proportion of

applicants from this group in a single round results in the process converging to the active state.

Another possible approach is to directly decrease the noise by improving the evaluation process

(e.g., by spending more effort on evaluation, conducting more interviews, etc.).

Regardless of the type of intervention, our results highlight the importance of drastic interven-

tions. By significantly increasing the firm’s hiring from a disadvantaged group or directly improving

its evaluation process, such interventions can ensure that the noise variance crosses the critical

threshold. Once this is achieved, the group can naturally converge to the active state, maintaining

its improved status even after the intervention ends. In contrast, mild interventions, even those in

place for a long time, that do not lower the noise variance below the threshold are ineffective in

the long run. Such interventions might temporarily boost hiring while they are in effect but fail

to create the self-reinforcing dynamics necessary for sustained improvement, causing the group to

fall back to the inactive state when the intervention is lifted.

3.3.1. Demographic parity is sufficient. It is natural to ask: how drastic does an interven-

tion have to be? We show that imposing hiring rates to be equal across groups, where the hiring

rate matches that of a group in the active state, is a sufficient intervention. It will either induce

convergence to the active state, or it may not, in which case this serves as evidence that there is

no active state.

Specifically, suppose there are two groups, A and B, where group A is in the active steady state

and group B is not. We consider the intervention of increasing the hiring rate of group B to match

that of group A. Specifically, let q∗(A)∈ [0,1] be the hiring rate corresponding to the active steady

state for group A. Then, we show that hiring q∗(A) proportion of group B applicants will lead

group B to the active state, if it exists.

Proposition 3. Suppose at time t, the hiring rate of group B is set to be q∗(A); i.e., qt(B) =

q∗(A). Then, if the active state for group B exists, then σ2
t+1(B)< σ̄2(B), and group B will converge

to the active state.

Proposition 3 does not say that group B will always converge to an active steady state, as this

may not exist for group B (which would occur if P (B) is too small). However, if demographic

parity does not work, this serves as evidence that the active steady state does not exist, and hence

no intervention that decreases the noise variance can be successful. That is, even if one were to

further increase the hiring rate for group B beyond demographic parity, it would not converge to

an active state.

We note that setting explicit quotas for demographic groups is often not legal; for example, such

quotas are prohibited in the United States. However, we do not interpret demographic parity as
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necessarily imposing such quotas. Rather, we view demographic parity as a benchmark: a prop-

erty that firms may aim to achieve through broader recruitment efforts or structural changes to

their hiring process. For instance, a firm might increase representation by expanding its recruiting

pipeline to include different institutions or by partnering with organizations that reach underrep-

resented groups. Our result should be interpreted in this spirit: if a firm is able to increase hiring

rates to satisfy demographic parity, then this is always sufficient to induce convergence to the

favorable steady state, if one exists.

4. Competition Across Groups

So far we have assumed that the firm hires all applicants whose inferred skill is higher than τ ,

where τ > 0 is an exogenous parameter. We now consider a variant of the model with competition

across groups. We assume the firm has a total hiring capacity of C > 0, and they hire the top C

mass of applicants across the groups with the highest inferred qualities. Given two groups A and

B, this model can equivalently be stated as the firm selecting a time-dependent threshold τt such

that

P (A)Pr(E[St(A) |Ot(A)]> τt)+P (B)Pr(E[St(B) |Ot(B)]> τt) =C,

and then hires everyone whose inferred skill is larger than τt. We normalize the size of group A

to be 1, and that group A is the smaller group: 1 = P (A) ≤ P (B). We assume that the initial

condition, (q0(A), q0(B)), satisfies P (A)q0(A)+P (B)q0(B) =C.

We first show that the hiring rates move monotonically and converge to a limit.

Proposition 4. For any t and any group g, if qt(g)> qt−1(g), then qt+1(g)> qt(g). If qt(g)<

qt−1(g), then qt+1(g)< qt(g). If qt(g) = qt−1(g), then qt+1(g) = qt(g). Lastly, qt(g) converges to some

limit q∞(g)≥ 0 as t→∞.

4.1. Characterizing Steady States

We say that (q∞(A), q∞(B)) is an inclusive steady state if both q∞(A)> 0 and q∞(B)> 0. If one

of q∞(A), q∞(B) is positive and the other is 0, then we say that the steady state is exclusive.

We first characterize two conditions that result in an exclusive steady state. The first condition

is that the initial hiring rate for one group is sufficiently small.

Theorem 2. For any group g and any C ∈ (0,1/2), there exists a q̃ > 0 such that if q0(g)< q̃,

then limt→∞ qt(g) = 0.

Theorem 2 implies that when the discrepancy between initial hiring rates is sufficiently large

and one group initially has a small hiring rate, then the firm will eventually exclusively hire from

the other group. Note that this result does not depend on the size of the groups; the hiring rate
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for the larger group can go to 0 if their initial hiring rate is sufficiently small. Theorem 2 implies

that as long as C < 1/2, there always exist initial conditions that result in q∞(A) = 0, and there

exist initial conditions that result in q∞(B) = 0.

Next, we show that even if the initial discrepancy in hiring rates is small, an exclusive steady

state arises when the total hiring capacity C is sufficiently small.

Theorem 3. Suppose either of the following two conditions hold:

• q0(A)< q0(B), or

• q0(A) = q0(B) and P (A)<P (B).

Then, there exists a C ′ such that if C <C ′, qt(A)→ 0 and qt(B)→C as t→∞.

Theorem 3 specifies two conditions in which the hiring rate of group A goes to 0 when C is

sufficiently small. The first condition is when the initial hiring rate of group A is smaller than

group B. The second condition is when the initial hiring rates are the same, but the size of group

A is strictly smaller than that of group B. Therefore, both the initial hiring rate and the group

size plays a crucial role in the system dynamics.

Note that the capacity C is comparable to the parameter τ in the original model, which both

represents the “selectivity” of the firm. Specifically, a larger value of τ decreases the hiring rate,

which is analogous to a larger value of C. Therefore, Theorem 3 is analogous to Theorem 1, which

states that if τ is large enough, there is no active state and the group converges to an inactive

state. In the competition model, when C is small enough, the hiring rate for the disadvantaged

group goes to 0.

On the positive side, we show that an inclusive steady state can arise when C is large enough,

and the initial discrepancy in hiring rates is small. We first show this when group sizes are equal,

where there is an inclusive steady state where the hiring rate for both groups is exactly C/2.

Theorem 4. Suppose P (A) = P (B) = 1. There exists C ′ < 1 such that if C ∈ (C ′,1), there exists

δ > 0 such that if |q0(A)− q0(B)|< δ, then q∞(A) = q∞(B) =C/2.

Next, we show a similar result when the group sizes differ. We show that an inclusive steady state

arises when group sizes slightly differ and the initial discrepancy in hiring rates is small. However,

this inclusive steady state does not have equal hiring rates — the hiring rate at the steady state is

smaller for the smaller group.

Theorem 5. Suppose P (B)>P (A) = 1. There exists a C ′ < (P (A)+P (B))/2 such that if C ∈
(C ′, (P (A)+P (B))/2), there is a steady state (q∞(A), q∞(B)) where 0< q∞(A)< q∞(B). Moreover,

there exists a δ > 0 such that if q0(A)> q∞(A)− δ, then the process converges to (q∞(A), q∞(B)).

In summary, under the competition model, there are multiple distinct steady states that differ in

long-term hiring rates for each group. As in the original model, which of these steady state arises

is crucially determined by the firm’s initial evaluation ability for each group.
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4.2. Increasing Population Size Exacerbates Disparities

We show that when the population size increases over time, this worsens the gap in hiring rates

between two groups compared to when the population size stays constant. For this extension, we

consider just two time steps: s − 1 and s, and we evaluate what happens when the group size

increases at time s. We denote the size of group g at time t as Pt(g). We compare the outcome

at time s under two settings: (1) group size stays the same for both groups and (2) group size

increases for both groups, with the same multiplicative factor. Let P (n)
s (g) be the size of group g at

time s under setting (n). Then, setting (1) corresponds to P (1)
s (A) = Ps−1(A), P

(1)
s (B) = Ps−1(B),

while setting (2) corresponds to P (2)
s (A) = βPs−1(A), P

(2)
s (B) = βPs−1(B), for β > 1.

We assume that the only difference between settings (1) and (2) is the population increase at

time s; hence the noise variance at the beginning of time s is the same under both (1) and (2).

Then, at time s, the threshold τs changes across the two settings; it will be larger under (2) since

the population increases, but the total mass hired stays the same. This induces the hiring rate of

each group at time s to differ. For group g ∈ {A,B}, let q(n)s (g) be the hiring rate at time s for

setting (n). We define ζ(n)s (g) = (Ps(g)q
(n)
s (g))/C to be the fraction of total hires that come from

group g under setting (n). We show that the group with the lower noise variance is better off in

setting (2) than setting (1) in terms of ζ(n)s (g).

Proposition 5. If σ2
s(A)<σ2

s(B), then ζ(1)s (A)< ζ(2)s (A).

This result states that if group A has a smaller noise variance, the hired pool will have a higher

fraction of group A applicants when the population increases, compared to when the population

stays the same. Therefore, increasing the population, which increases the level of competition,

favors the group with the smaller noise variance.

5. Simulation: ML-based Hiring System

To complement the theoretical analysis, we conduct a simulation study in which the firm uses

standard machine learning tools to estimate applicant quality based on observed data. These

simulations aim to mimic a practical implementation of a hiring system that is deployed over a

time frame, and our simulation results show that this system exhibits the same qualitative behavior

established by our theoretical results of the stylized model.

5.1. Simulation Setup

A firm evaluates P applicants per period from the same group, where applicant i is represented by

a feature vector Xi ∼N (0, Id), with d= 10. The applicant’s true skill is given by Si = ⟨β,Xi⟩+ ϵi,

where ϵi ∼N (0,1) and β is an unknown parameter. At time t, the firm uses an estimator β̂t−1 to

compute a score Ŝi = ⟨β̂t−1,Xi⟩ for each applicant i. The firm hires everyone whose score Ŝi exceeds



Baek and Makhdoumi: The Feedback Loop of Statistical Discrimination
20

a fixed threshold τ . The threshold τ is determined through a target hiring rate q̃ ∈ [0,1]. Given q̃,

τ is chosen so that if β were known perfectly, then the hiring rate would equal q̃.

For each hired applicant at time t, the true skill S is revealed. The firm uses the data of hired

applicants at time t to estimate β̂t using linear regression with regularization. Specifically, at

time t, suppose the firm hires n applicants, and let X ∈ Rn×d and S ∈ Rn represent the dataset

corresponding to those applicant’s features and true skills respectively. Then, the estimator β̂t

is computed as β̂t =
(
λI+X⊤X

)−1 (
X⊤S

)
. In our simulations, we set λ = 106. This estimator

corresponds to linear regression with an ℓ2 regularization, which is also equivalent to Bayesian

linear regression.

To initialize β̂0, the firm starts with an initial dataset of size M . That is, M applicant features

are drawn at random, and their true skill is known, and the firm estimates β̂0 using this dataset.

The parameter M is representative of the firm’s initial evaluation ability, since a larger value of M

implies a better initial estimate of β.

We run simulations by varying both q̃ ∈ {0.15,0.2,0.25,0.3,0.35,0.4} and M ∈ [50,2000], fixing

P = 5000. For each set of parameters, we simulate the process over t = 100 time steps, and we

repeat this 300 times. The true parameter β was drawn from N(0, I). We are interested in q100,

the hiring rate at t= 100. Figure 2 plots q100, averaged over 300 runs, for each value of q̃ and M .
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Figure 2 For each value of M and target hiring rate (q̃), the plot shows the hiring rate at time t= 100,

averaged over 300 runs. The population P is fixed to 5000.

5.2. Results

The simulation results mirror several findings that are consistent with the theoretical results.



Baek and Makhdoumi: The Feedback Loop of Statistical Discrimination
21

Two steady states. Figure 2 reveals a sharp transition in the long-term hiring rate as a function

of M . For each value of q̃, the hiring rate is consistently zero when M is small. As M increases,

there is a sudden increase in the hiring rate, which stabilizes to a constant number. This pattern

mirrors the bifurcation behavior established in Theorem 1: the hiring rate converges either to an

inactive state with no hiring or to an active state with a stable positive hiring rate, and the outcome

depends on whether the initial estimation ability is above or below a threshold.
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Figure 3 For q̃= 300, we plot (a) the percentage of simulation runs that end in each steady state, and (b) the

distribution of the hiring rate at time t= 100 when the hiring rate is non-zero.

Next, we evaluate the distribution of outcomes, rather than solely looking at average statistics.

We fix q̃= 0.3, and we observe that for any value of M , the hiring rate at t= 100 can be bifurcated

into exactly two outcomes: either the hiring rate is 0, or the hiring rate is between 20.0% and 25.1%.

The two outcomes can be thought of as the inactive and active steady states respectively; because

the process is random, the active steady state is not represented by one number. In Figure 3, we

plot (a) the percentage of simulation runs that end in each steady state, and (b) the distribution

of the hiring rate at time t= 100 when the hiring rate is non-zero.

Figure 3a confirms that the long-run hiring rate exhibits only two possible outcomes: either

zero or to a non-zero range between approximately 20% and 25%. This reinforces the existence of

distinct inactive and active steady states. Figure 3b shows that even within the active steady state,

the long-run hiring rates cluster tightly around 22.4%, with variance arising from the stochasticity

in the learning process. This concentration highlights that while the process stabilizes, residual

randomness still influences the precise hiring rate attained. These results demonstrate that the key
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insights of the theoretical model, the existence of two steady states, and the dependence on the

initial evaluation ability emerge in a realistic ML-based environment.

We note that a key driver of these results is the regularization used in estimating the parameter

β, which is equivalent to assuming a Bayesian model where the prior on β is centered at 0. This

regularization shrinks the estimator β̂ toward zero, particularly when the amount of available data

is small. As a result, if the initial dataset is too limited, the estimated β̂ may be close to zero,

causing the firm to underestimate applicant quality and hire no one.

Observed hiring rate below target. Interestingly, Figure 2 shows that the hiring rate is

consistently below the target hiring rate q̃. Recall that q̃ is the hiring rate that one should expect

if β was known perfectly. This gap indicates that the algorithm does not perfectly recover the true

parameter β; rather, the estimation retains a nontrivial amount of noise. As a result, the process

converges to a steady state where the hiring rate reflects this residual noise. This mirrors Theorem 1,

which establishes that even in the active steady state, the noise variance remains strictly positive,

and thus the hiring rate is lower than what would be achieved under perfect information. In both

the model and the simulation, the long-run hiring rate is endogenously determined by the amount

of signal noise required to sustain that level of hiring.
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Figure 4 The plot shows the hiring rate at time t= 100, averaged over 300 runs, where M is fixed at 2000 and

the population size P is varied.

Smaller groups are worse off even in the active state. Next, we vary the population size

P , and we fix M = 2000, chosen to be large enough that the process should converge to active

steady state, if it exists. Figure 4 plots the hiring rate q100 as a function of P , for various target
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hiring rates. Consistent with the result that smaller groups are worse off (Proposition 1), we see

that the hiring rate at the active state increases with P . When P is small enough, the hiring rate

is 0, which implies that there is no active state when the group size is too small.

6. Extensions

This section contains several extensions of the original model. In Section 6.1, we consider a model

where applicants can improve their skills by exerting effort. In Section 6.2, we consider a variant

of the model in which the noise variance can depend on more than one previous time step. In

Section 6.3, we impose a maximum value that the noise variance can take. In Section 6.4, we consider

a different functional form of the noise update rule that is motivated by a learning dynamic where

a firm observes multiple features for each applicant and aims to learn which feature is informative.

6.1. What if applicants can improve their skill?

In this section, we study an extension where applicants can increase their skills by exerting effort,

which incurs a cost. Examples of what this may entail are: receiving education and training,

obtaining certifications and licenses, and gaining work experience.

At each time step, an applicant’s skill is St = θt + ηt, where θt ∼ N (0,1) is their ability, and

ηt ≥ 0 is their effort level. The firm observes Ot = θt+ ϵt and ηt, where ϵt ∼N (0, σ2
t ) is drawn i.i.d.

for each applicant. As before, the firm hires applicants whose expected skill is higher than the

threshold τ > 0; i.e., E[St |Ot, ηt]≥ τ . We assume the effort level is observed by the firm through,

for example, the applicant’s resume. We assume that the level of effort ηt is equal for all applicants

in the same group. This is equivalent to each applicant choosing an effort level ηt being knowing

the realization of their ability θt, but with knowledge of the noise variance σ2
t .

We assume the cost of effort is quadratic, given by c(η) = a
2
η2 for some parameter a ∈R+. The

applicants choose the effort level η∗(σ2
t ) that maximize the probability that they are hired, minus

the cost of exerting the effort. We assume that c(τ)> 1 (or equivalently, a > 2/τ 2), which implies

that a group of applicants will not benefit from the noise variance diverging to ∞.3

We establish that our main results continue to hold in this setting as well.

Theorem 6. There exists ã∈R+ such that for any a≥ ã there exists τ̃ ∈R+ for which:

• If τ > τ̃ , then there exists only one steady state which is inactive.

• If τ < τ̃ , then there is exactly one active stable steady state, and the inactive steady state exists.

Furthermore, there exists σ̃2 such that all noise variances σ2 < σ̃2 converge to the active state, and

all noise variances σ2 > σ̃2 converge to the inactive state.

3 Note that as σ2 → ∞, the firm’s evaluation of each applicant’s ability, E[θ | θ + ϵ], goes to 0, regardless of the
observation. If the cost of putting in effort η= τ is smaller than 1, then as the noise approaches ∞, the optimal action
for all applicants is to exert an effort of τ , and every applicant will be hired. We assume that c(τ)> 1 to avoid this
behavior.
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Theorem 6 is the analogue of Theorem 1 in a setting where the applicants can exert effort. The

role of the assumption a ≥ ã is for technical reasons to ensure that the optimal effort is interior

and that the optimal effort does not drastically change when the noise variance changes.

Figure 5 For parameters P = 12, τ = 1, b= 1, and a= 2, we plot the optimal effort and f as a function of the

current noise variance. The left plots the optimal effort, η∗(x) while the right plots the corresponding function

f(x;P, τ) along with y= x (analogous to Figure 1).

Next, we show that the two steady states result in different levels of effort exerted, which then

produces a discrepancy in the underlying skill distributions across these two states.

Proposition 6. For any instance where σ2
∗ <∞, the optimal effort at the active state is non-

zero; i.e., η∗(σ2
∗) > 0. The optimal effort tends to zero when the noise goes to infinity; i.e.,

limσ2→∞ η∗(σ2) = 0.

Proposition 6 states that if groups A and B end up in the active and inactive state, respectively,

applicants in group A will exert non-zero effort, while applicants in group B will exert zero effort.

Then, even if the groups had identical ability distributions (i.e., θ), the skill distribution (i.e., θ+η)

for group A will be higher than (first-order stochastically dominate) group B. That is, the dynamics

of our model can result in tangible difference in skills across the groups. This is in contrast to the

baseline model (without effort), where even when two groups end up in two different steady states,

the true skill distributions are still identical across groups, and the groups only differed in the noise

variance perceived by the firm. This implication is of a similar flavor to the models of Arrow (1973)

and Coate and Loury (1993), where there are multiple equilibria that differ in whether applicants

invest in improving their skill.
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6.2. What If the Noise Variance Depends on Multiple Previous Rounds?

In our baseline model, we assumed that the noise variance in the next round was solely a function of

the current round’s hiring decision. Here, we assume that the noise variance in the next round is a

combination of the hiring decision in this round as well as the current noise variance. In particular,

we assume that the noise variance for the next time step updates as

σ2
t+1 = α

1(
P · q(τ ;σ2

t )
)b +(1−α)σ2

t ,

where α ∈ (0,1] captures the degree of interpolation between the current hiring decision and the

current noise variance (which in turn depends on hiring in previous rounds). Note that our baseline

model corresponds to α= 1. We establish our main result continues to hold for any α, and moreover,

the critical thresholds for the noise variance convergence do not change with α.

Proposition 7. For any given P and any α∈ (0,1], the statements of Theorem 1 hold with the

same quantities τ̄ and σ̄2.

6.3. Bounding the Maximum Noise Variance

In our model, the dynamics of the noise variance was defined so that the variance can be unbounded.

Specifically, in (1), if the proportion of applicants hired is zero (qt = 0), then the noise variance

at the next time step is infinity. In this section, we consider a modification to the model where

the noise variance is bounded at a maximum value, for instance, because of transfer learning from

other groups.

First, fix an instance of the original model where the active state exists. For this instance, let

σ2
∗ < ∞ be the noise variance at the active steady state, and let σ̄2 be the noise threshold to

converge to the active steady state, from Theorem 1.

Now, consider a modified instance where the noise variance is capped at a maximum valueM > 0.

Specifically, we assume the noise variance updates as

σ2
t+1 =min

{
1

(P · qt)b
,M

}
,

to replace the the transition in (1). We characterize the convergence of this modified instance,

which depends on the value of M .

Proposition 8. The set of stable steady states and the convergence properties are established

in the following two cases.

• If M < σ̄2, then there is one stable steady state with noise variance min{M,σ2
∗}. All noise

variances converge to this steady state.

• If M ≥ σ̄2, then there are two stable steady states, one at σ2
∗ and one at M . All noise variances

σ2 < σ̄2 converge to σ2
∗, and all noise variances σ2 > σ̄2 converge to M .
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Figure 6 The noise transition function with a maximum noise variance of M = 2.5 and M = 4.5. The other

instance parameters are the same as Figure 1: P = 12, τ = 1, and b= 1. The blue dots refer to the stable steady

states.

The two cases of this result can be seen pictorially in Figure 6. Because the noise variance is

bounded, the inactive state does not exist (which requires the variance to diverge to ∞). However,

in the second case of Proposition 8, there are still two distinct steady states that the system can

converge to with noise variances σ2
∗ and M , respectively. These two steady states differ in the

proportion of applicants who are hired at each of the steady states; specifically, the proportion

hired is smaller at the steady state with noise variance M . Hence, in this scenario, one can interpret

the steady state with variance M as the less desirable state, which a group converges to when the

initial noise variance is higher than the threshold σ̄2.

6.4. Alternative Update Rule

We consider a different functional form of the noise update rule. As before, Ot represents a noisy

signal of an applicant’s true skill, St, and the firm computes the inferred skill, E[St |Ot], and hires

the applicant if and only if E[St | Ot] > τ . We consider the dynamics in the distribution of the

inferred skill, E[St |Ot]. Specifically, we consider a model where inferred skill distribution takes the

form:

E[St |Ot]∼N
(
0, c1 +

c2
1+ b aPqt−1

)
, (2)

where c1, c2, b > 0 and a∈ (0,1) are parameters. Note that the original model from Section 2 assumes

that the inferred skill is distributed as

E[St |Ot]∼N
(
0,

1

1+1/(Pqt−1)b

)
.
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The update rule of (2) is motivated by considering the limit of a microfounded learning dynamic,

where each applicant has a set of features, and a firm learns about which feature is informative.

The details of this learning dynamics is developed in Appendix D.

We analyze the dynamics given by (2). Specifically, the parameters of the process are c1, c2, b > 0,

a∈ (0,1), τ > 0 and group size P . The process is initialized with a hiring rate q0 ∈ [0,1]. Given this,

we show that there are parameter regimes in which there are at least two distinct stable steady

states.

Theorem 7. For any P and τ > 0, there exists constants B,D > 1,C > 0 such that if b ≥ B,

c1 <C, and a ∈ (exp(−b), b−D), then the dynamics specified by (2) has at least two distinct stable

steady states. All steady states are active; q∞ > 0.

We denote by g(x) to represent the mapping between the variance of the inferred skill from one

time step to the next time step. Then, whether this variance increases or decreases in one step

depends on whether g(x) is greater than or larger than x. Similar to the function f from Figure 1, a

steady state corresponds to a point where g(x) intersects the line y= x. An example of an instance

with exactly two stable steady states is displayed in Figure 7. The points marked x1 and x3 are

stable steady states, while x2 is unstable. Therefore, for this instance, the process converges to x1

if the initial variance of the inferred skill is less than x2. If the initial variance was larger than x2,

then the process converges to x3.

Figure 7 Example of the function g(x) with P = 1, τ = 1, b= 10, a= 10−12, c1 = 0, and c2 = 1. x1 and x3 are

stable steady states, while x2 is an unstable steady state.

Under the definition of g(x), a larger value of x corresponds to a “more desirable” steady state.

Since the firm hires everyone with inferred skill larger than τ > 0, a greater variance for the inferred
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skill implies that a greater portion of applicants will be hired. Therefore, in Figure 7, the steady

state at x3 is more desirable than x1, in that the corresponding hiring rate is higher at x3 than

x1. However, both steady states are active, meaning that the fraction of applicants hired is not

zero. This is in contrast to the result of Theorem 1 for the model of Section 2, where there were

two steady states, but one of them was inactive. However, the implications of the results are the

same across the two models — there are multiple distinct steady states, and which one the process

converges to depends on the initial state of the group.

7. Conclusion

In this paper, we considered a dynamic labor market model and established how disparities in

hiring outcomes can emerge and persist over time. The novel perspective of our model lies in its

portrayal of how the firm’s initial evaluation abilities, tied to historical disadvantages and beliefs

about groups, can create self-reinforcing cycles that result in long-term disparities. Notably, two

groups with identical skill distributions might differ significantly in hiring outcomes because of

these initial perceptions.

We believe that this paper serves as a bridge between the literatures of statistical discrimina-

tion and algorithmic fairness, as well as contributing to each of these domains. On the statistical

discrimination front, our work provides a dynamic generalization of a classical model, where the

dynamic nature provides insight on why and how disparities evolve over time. On the algorithmic

fairness front, our model provides a framework that models how the performance of machine learn-

ing algorithms change over time based on the availability of data, which depend on past decisions.

This framework can be leveraged and extended to settings beyond the hiring application considered

in this paper.
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Appendix A: Proofs for Section 3

This appendix includes the omitted proofs from Section 3.

Proof of Lemma 1

Let us define the following functions:

B(x) = τ
√
1+x and f(x) =

1

P b(1−Φ(B(x)))b
.

We would like to show that f(x) intersects the line y = x at most twice for x≥ 0. We have that f(x) = x

if and only if x(1−Φ(B(x)))b = 1/P b. We define v(x) = x(1−Φ(B(x)))b and prove that v(x) intersects the

horizontal line y= 1/P b at most twice. To prove this, we can show that v′(x) = 0 at most once. We have

v′(x) = (1−Φ(B(x)))b −xb(1−Φ(B(x)))b−1Φ′(B(x))B′(x). (3)

Then, v′(x) = 0 if and only if

1−Φ(B(x))

Φ′(B(x))
= bxB′(x). (4)

Let L(x) = 1−Φ(B(x))

Φ′(B(x))
and R(x) = bxB′(x) be the LHS and the RHS of (4) respectively. If we show that L(x)

is strictly decreasing in x and R(x) is strictly increasing in x, then L(x) would intersect R(x) at most once,

which completes the proof.

Note that if h(x) = 1−Φ(x)

Φ′(x)
, we have that h′(x)< 0 because

h′(x) =
−Φ′(x)Φ′(x)− (1−Φ(x))Φ′′(x)

(Φ′(x))2

=−1+
x(1−Φ(x))

Φ′(x)

< 0,

where the second equality follows from using Φ′′(x) = −xΦ′(x), and the inequality follows from using 1−

Φ(x)< Φ′(x)/x.4 Then, since B(x) = τ
√
1+x is strictly increasing and h(x) is strictly decreasing, L(x) =

h(B(x)) is strictly decreasing.

Next, consider the RHS of Eq. (4). We have

B′(x) =
1

2
τ(1+x)−1/2.

4 To see this inequality, notice that, for any t∈R+, since x/t > 1 for x in (t,∞), we have

1−Φ(t) =
1√
2π

∫ ∞

t

e−x2/2 dx

<
1√
2π

∫ ∞

t

x

t
e−x2/2 dx

=
1√
2π

1

t
e−t2/2 =

Φ′(t)

t
.
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Therefore, we can write

R′(x) =
b

2
τ(1+x)−1/2 − b

4
xτ(1+x)−3/2

=
b

2
τ(1+x)−1/2

(
1− 1

2
· x

1+x

)
> 0.

This establishes that L(x) is strictly decreasing and R(x) is strictly increasing. Hence, they intersect at most

once. ■

Proof of Theorem 1

We keep using the following shorthand notation:

f(x) =
1

P b(1−Φ(τ
√
1+x))b

.

Notice that f(0) = 1
P b(1−Φ(τ))b

> 0.

We will show that there exists a τ̄ such that if τ > τ̄ , f(x) is strictly above the y = x line for all x≥ 0,

while if τ < τ̄ , then f(x) has two intersections with y= x, where f(x) is below y= x only in between the two

intersections. Note that if f(x) is always above y= x, then no matter what the initial noise variance is, the

variance will keep increasing at each time step, and will approach ∞ as t→∞. Therefore, if f(x) is always

above the y= x line, then there is only one steady state which is inactive. In the other case where f(x) has

two intersections with y = x, let σ̄2 is the second intersection of these curves. Then, any σ2 < σ̄2 converges

to the first intersection of the curves, which is an active stable steady state. Any σ2 > σ̄2 converges to the

inactive steady state. The second intersection, σ̄2, is also an active steady state, but it is not stable.

Therefore, to prove Theorem 1, we simply have to show the existence of the threshold τ̄ where f(x) is

above y= x for τ > τ̄ , and f(x) has two intersections with y= x for τ < τ̄ .

First, we show that for any τ >
√
2P b/b, f(x) is above the y= x line for all x≥ 0. Since f(0)> 0, we will

simply show that f ′(x)> 1 for all x≥ 0.

f ′(x) =
bΦ′(τ

√
1+x) τ

2
1√
1+x

P b(1−Φ(τ
√
1+x))b+1

(a)

≥
b
(
1−Φ(τ

√
1+x)

)
τ2

2

P b(1−Φ(τ
√
1+x))b+1

=
bτ2

2P b

1

(1−Φ(τ
√
1+x))b

(b)

> 1,

where (a) follows from using 1−Φ(x)<Φ′(x)/x and (b) follows from τ2 > 2P b/b.

Next, we will show that when τ is small enough, f(x) has exactly two intersections with y= x, where f(x)

is below the line y= x only in between the two intersections. Note that for any τ , if x is large enough, then

f ′(x)> 1. This can be seen using the previous set of inequalities:

f ′(x)≥ bτ2

2P b

1(
1−Φ(τ

√
1+x)

)b

(a)

> 1,
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where (a) follows by noting that for large enough x, 1−Φ(τ
√
1+x) becomes close to 0 and therefore for

τ <
√
2P b/b, we have (1−Φ(τ

√
1+x))b < bτ2

2P b .

Since f(0)> 0 for all τ , we will show that when τ is small enough, there exists a x0 > 0 where f(x0)<x0. Let

x0 =
(
1
τ

)2 − 1. Then, f(x0) =
1

P b(1−Φ(1))b
, and hence f(x0)<x0 if τ < 1/

√
(P b(1−Φ(1))b)−1 +1. Therefore,

if τ <min{1,1/
√
(P b(1−Φ(1))b)−1 +1}, then there exists a x0 > 0 such that f(x0)<x0. Hence, for τ small

enough, f(x) has two intersections with y= x.

We have shown that if τ is large enough, f(x) has no intersections with y= x, while if τ is small enough,

it has two intersections. Note that taking x′ as fixed, the value of f(x′) strictly and monotonically increases

as τ increases. Therefore, let τ̄ be the smallest value of τ where f(x) has fewer than 2 intersections with

y = x. Then, it must be that for τ ≥ τ̄ , f(x) has at most one intersection with y = x, in which there is only

one inactive steady state. For τ < τ̄ , f(x) has two intersections with y= x. This completes the proof. ■

Proof of Proposition 1

Note that by using Lemma 1 and Theorem 1, σ̄(P ) is the second intersection of f(x) with y= x. By increasing

P , the function

f(x,P ) =
1

P b

(
1−Φ(τ

√
1+x)

)b

decreases for all x ∈ R+. Therefore, the second intersection of f(x) with y = x increases as P increases,

proving the first statement of the proposition.

For the second statement of the proposition, suppose there are two groups with populations P1 and P2

where P1 <P2. We will show that q(τ,σ2
∗(P1, τ))≤ q(τ,σ2

∗(P2, τ)). First, suppose group 1 has no active state;

i.e., σ2
∗(P1, τ) =∞. Then, q(τ,σ2

∗(P1, τ)) = 0 and hence the inequality holds. Second, suppose σ2
∗(P1, τ)<∞

is finite. Suppose that x∗
1 (correspondingly, x∗

2) is the noise variance in the active steady state when the

population size is P1 (correspondingly, P2). We also let q∗1 and q∗2 be the hiring probability in the active steady

state for the two groups, respectively. Then, by definition, f(x∗
1, P1) = 1/(P1q

∗
1)

b and f(x∗
2, P2) = 1/(P2q

∗
2)

b.

Note that f(x,P1) =
P b
2

P b
1
f(x,P2) for any x ≥ 0. Since f(x,P1) > f(x,P2), and x∗

g corresponds to the first

intersection of f(x,Pg) with y= x, we have that x∗
1 >x∗

2. Then,

1/(P1q
∗
1)

b = f(x∗
1, P1) =

P b
2

P b
1

f(x∗
1, P2)>

P b
2

P b
1

f(x∗
2, P2),=

P b
2

P b
1

1/(P2q
∗
2)

b (5)

where the inequality follows from x∗
1 >x∗

2 and that f is increasing in x. Rearranging the first and last terms

results in q∗2 > q∗1 as desired. ■

Proof of Proposition 2

Let q= q(τ ;σ2
∗(P, τ)) be the proportion of applicants hired at the active steady state. Then, if an intervention

hires q proportion of applicants in a single round, then the noise variance at the next time step will be

σ2
∗(P, τ)). Therefore, under the natural hiring rule, the noise variance will stay at this value by definition of

the steady state, proving this is a sufficient intervention. ■
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Proof of Proposition 3

Let σ2
∗(A) be the noise variance corresponding to the active state for group A. Suppose P (B)≥ P (A). Then,

if qt(B) = q∗(A), then it will be that σ2
t+1(B)≤ σ2

∗(A). Proposition 1 states that σ̄2(B)≥ σ̄2(A). Therefore,

we have that σ2
t+1(B)≤ σ2

∗(A)≤ σ̄2(A)≤ σ̄2(B). Since the noise variance at time t+1 is below the threshold

σ̄2(B), group B will converge to the active steady state.

Next, suppose P (B)<P (A) and the active steady state for group B exists. Let σ2
∗(B) be the noise variance

corresponding to the active state for group B, and let q∗(B) ∈ [0,1] be the corresponding hiring rate at the

steady state. From Proposition 1, σ2
∗(B)>σ2

∗(A), and therefore q∗(B)< q∗(A). Since qt(B) = q∗(A)> q∗(B),

it must be that σ2
t+1(B)<σ2

∗(B)< σ̄2(B). Therefore, group B will converge to the active steady state. ■

Appendix B: Proofs of Competition Results

B.1. Preliminary Terms and Results

For group g at time t, we let

γt(g) =
1

1+σ2
t (g)

(6)

denote the variance of the distribution of E[St |Ot]. That is, E[St |Ot]∼N(0, γ).

The key idea of the proofs for the competition model revolves around analyzing a function τg(q). For a

group g, we define the function τg(q) for q ∈ [0,1] to be the threshold such that for a group with noise variance

σ2 = 1/(P (g)q)b, the threshold τg(q) results in exactly q percent of applicants hired. That is, if qt−1(g)

proportion of applicants from group g were hired at time t− 1 and the threshold at time t is τg(qt−1(g)),

then we have that qt(g) = qt−1(g). The function τg(q) can be explicitly written as

τg(q) =
Φ−1(1− q)√
1+1/(Pq)b

. (7)

If the threshold at time t, τt, is greater than τg(qt−1(g)), this implies that the proportion hired from group

g at time t, qt(g), is less than qt−1(g). Conversely, if τt < τg(qt−1), then we will have qt(g)> qt−1(g). Therefore,

whether the hiring rate increases or decreases for group g depends on whether the threshold τt is less than

or greater than τg(qt−1(g)).

We first prove several properties of τg(q).

Proposition 9. The function τg(q) satisfies the following properties:

(i) τg(q)→ 0 as q→ 0.

(ii) There exists a q′ > 0 such that τ ′
g(q)> 0 for all q ∈ (0, q′).

(iii) There exists a q′ > 0 such that τ ′
g(q)< 0 for all q ∈ (q′,0.5).

Proof of Proposition 9 We first state a useful upper bound on the inverse CDF of the normal distribution

that holds for all q ∈ [0,0.5]:

Φ−1(1− q)≤
√
2 log(1/2q). (8)

Proof of property (i). Denote by f1(q) =Φ−1(1− q) and f2(q) =
√

1+1/(Pq)b the numerator and denom-

inator of τ(q) respectively. Note that when q → 0, both f1(q)→∞ and f2(q)→∞. We take the derivative

of both terms and then use L’Hopital’s rule.
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We have f ′
1(q) = − 1

ϕ(Φ−1(1−q))
, where ϕ(x) is the pdf of the normal distribution, and f ′

2(q) =

−b

2P bqb+1
√

1+1/(Pq)b
. Therefore,

lim
q→0

f1(q)

f2(q)
= lim

q→0

f ′
1(q)

f ′
2(q)

= lim
q→0

2P bqb+1
√

1+1/(Pq)b

bϕ(Φ−1(1− q))

= lim
q→0

2P b

b
qb+1

√
1+1/(Pq)b ·

√
2π exp((Φ−1(1− q))2/2)

Using (8), we get

lim
q→0

f1(q)

f2(q)
≤ lim

q→0

2P b

b
qb+1

√
1+1/(Pq)b ·

√
2π

2q

=
P b

√
2π

b
lim
q→0

√
1+1/(Pq)b

q−b

=
P b

√
2π

b
lim
q→0

− 1

2
√

1+1/(Pq)b
b(Pq)−b−1P

−bq−b−1

= 0,

where the second last step uses L’Hopital’s rule.

Proof of property (ii). Recall that τ(q) = f1(q)

f2(q)
, where f1(q) =Φ−1(1− q) and f2(q) =

√
1+1/(Pq)b.

τ ′(q) =
f ′
1(q)

f2(q)
− f1(q)f

′
2(q)

(f2(q))2

=
1√

1+1/(Pq)b

(
f ′
1(q)+

bf1(q)

2q(P bqb +1)

)
. (9)

We want to show that f ′
1(q)+

bf1(q)

2q(P bqb+1)
> 0 when q is close to 0. Recall that f ′

1(q) =− 1
ϕ(Φ−1(1−q))

. As q→ 0,

bf1(q)

2q(P bqb+1)
→ ∞ and f ′

1(q) → −∞. We will show that bf1(q)

2q(P bqb+1)
→ ∞ at a faster rate than f ′

1(q) → −∞.

Consider the fraction of these two terms:(
bf1(q)

2q(P bqb+1)

)
−f ′

1(q)
=

bΦ−1(1− q)ϕ(Φ−1(1− q))

2q(P bqb +1)
.

Note that ϕ(x) is a decreasing function in x > 0. Using (8), we have ϕ(Φ−1(1− q)) ≥ ϕ(
√

2 log(1/(2q))) =

2q/
√
2π. Therefore, (

bf1(q)

2q(P bqb+1)

)
−f ′

1(q)
≥ bΦ−1(1− q)√

2π(P bqb +1)
.

Note that bΦ−1(1−q)√
2π(P bqb+1)

→∞ as q→ 0, and τ ′(q)> 0 for any q that satisfies bΦ−1(1−q)√
2π(P bqb+1)

> 1. Therefore, there

exists a q′ > 0 such that τ ′(q)> 0 for all q ∈ (0, q′).

Proof of property (iii). From the definition of τ ′(q) from (9), it is easy to check that τ ′(0.5)< 0; note that

f ′
1(0.5)< 0 and f1(0.5) = 0. Since τ ′(q) is continuous, we have that there exists a q′ such that τ ′(q)< 0 for

all q ∈ (q′,0.5]. □
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B.2. Preliminary Results on the Dynamics

We now prove results on the convergence of the system. The direction of movement of the hiring rates depend

crucially on how the value of τA(qt(A)) compares with τB(qt(B)).

Lemma 2. If τA(qt(A))> τB(qt(B)), then qt+1(A)> qt(A). If τA(qt(A))< τB(qt(B)), then qt+1(A)< qt(A).

If τA(qt(A)) = τB(qt(B)), then qt+1(A) = qt(A).

Next, we show that a steady state (q∞A , q∞B )> 0 must satisfy τA(q
∞
A ) = τB(q

∞
B ).

Lemma 3. If qt(A) → q∞A and qt(B) → q∞B as t → ∞ where q∞A > 0 and q∞B > 0, then it must be that

τA(q
∞
A ) = τB(q

∞
B ).

Lastly, we show show that if τA(qt(A))> τB(qt(B)), then qt(A) will converge to the closest point to the

right where τA(qt(A)) = τB(qt(B)) is equal to zero. Similarly, if τA(qt(A))< τB(qt(B)), qt(A) will converge to

the closest point to the left where τA(qt(A)) = τB(qt(B)) is equal to zero.

Lemma 4. Suppose τA(qt(A)) > τB(qt(B)), and suppose q̃ = inf{q > qt(A) : τA(qt(A)) = τB(qt(B))}

exists. Then, limt→∞ qt(A) = q̃. Similarly, suppose τA(qt(A)) < τB(qt(B)), and suppose q̃ = sup{q < qt(A) :

τA(qt(A)) = τB(qt(B))} exists. Then, limt→∞ qt(A) = q̃.

Proof of Lemma 2. Suppose τA(q0(A))< τB(q0(B)). We claim that the threshold at time t= 1, τ1 is strictly

between τA(q0(A)) and τB(q0(B)). Suppose instead, τ ≤ τA(q0(A)). Then it would be that q1(A)≥ q0(A) and

q1(B)> q0(B). This is a contradiction that both groups increase the proportion hired. Similarly, it will be a

contradiction if τ ≥ τA(q0(B)). Therefore, τ1 ∈ (τA(q0(A)), τB(q0(B))).

Since τ1 > τA(q0(A)), it will be that q1(A)< q0(A), and since τ1 < τB(q0(A)), it will be that q1(B)< q0(B).

Then, applying Proposition 4 gives us the result. □

Proof of Lemma 3 Suppose, to the contrary, that qt(A)→ q∞A and qt(B)→ q∞B where q∞A > 0 and q∞B > 0,

and τA(q
∞
A ) ̸= τB(q

∞
B ). Let τA = τ(q∞A ) and τB = τ(q∞B ). Suppose, WLOG, τA < τB. Let τ1 = τA+(τB − τA)/4,

τ2 = τA + (τB − τA)/2 and τ3 = τA + 3(τB − τA)/4 be three points evenly spaced between τA and τB. Let

Qg(τ, q) = 1−Φ(τ
√

1+1/(P (g)q)b) denote the percent of applicants hired from group g when the previous

proportion of applicants hired was q (and hence the noise in this round is 1/(P (g)q)b), and the threshold is

τ .

Let q′A =QA(τ1, q
∞
A ) be the proportion hired if the previous proportion hired was q∞A and the threshold if

τ1. Since τ1 > τA, we have that q′A < q∞A . Since qt(A)→ q∞A , let t0 be large enough so that qt(A)> q′A for all

t≥ t0. That is, if t≥ t0, then the percentage of applicants hired will be greater than q′A henceforth.

Next, consider the threshold τ2. We will show that it must be the case that the chosen threshold should

be strictly smaller than τ2. We have that QA(τ2, q
∞
A )< q′A. When τ2 is fixed, g(τ2, ·) is a continuous function

in the second argument. Therefore, there exists an ϵ > 0 such that if |q− q∞A | ≤ ϵ, then QA(τ2, q)< q′A. Let t1

be large enough such that for all t≥ t1, we have that |qt(A)− q∞A | ≤ ϵ. Therefore, when t≥ t1, a threshold of

τ2 results in the proportion of applicants being hired to be strictly less than q′A.

Combining the two above arguments, if t≥max(t0, t1), since it must be that qt(A)> q′A, but a threshold

of τ2 results in g(τ2, qt(A))< q′A, it must be that the threshold τt is strictly less than τ2.
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Now, one can repeat the same argument with the thresholds τ3 and τ2 for group B (where τ3 is the analog

of τ1 in the above argument) to show that it must be that the threshold τt is strictly higher than τ2. This

results in a contradiction. □

Proof of Lemma 4. Suppose τA(qt(A))> τB(qt(B)), and suppose qA = inf{q > qA :D(q) = 0} exists. Let

qB = (C −P (A)qA)/P (B) be the corresponding hiring rate for B. (qA, qB) is consistent and corresponds to

a steady state. Let γA = 1/(1 + 1/(P (A)qA)) and γB = 1/(1 + 1/(P (B)qB)) be the corresponding γ at this

steady state. From Lemma 2, we know that qt+1(A)> qt(A).

First, we show that qt+1(A) is at most q̃. Let τt be the threshold used at time t. Suppose, to the contrary,

that qt+1(A) > q̃. Since qt(A) < qA, γt(A) < γA. Therefore, the threshold τt must be smaller than τA(qA).

Since qt(B) > qB, γt(B) > γB. Then, under the threshold τt < τA(qA) = τB(qB), the proportion hired for

group B would be larger than qB. That means qt+1(A)> qA and qt+1(B)> qB, which is a contradiction since

P (A)qA +P (B)qB =C.

Therefore we have shown that qt(A) increases in t, and qt(A) ≤ q̃ for all t. Then, it must be that

limt→∞ qt(A) = q̃ from Lemma 3. The second statement of the lemma can be shown in the same way as the

first. □

B.3. Main Proofs

Proof of Proposition 4. For a fixed t≥ 1, suppose qt−1(A)< qt(A). We will show that qt(A)< qt+1(A).

Since P (A)qs(A) + P (B)qs(B) = C for any s, if the mass hired from group A increased (qt−1(A)< qt(A)),

it must be that the mass hired from group B decreased; qt−1(B) > qt(B). Therefore, γt+1(A) > γt(A) and

γt+1(B)<γt(B).

Let τ ′ be the threshold such that Pr(E[St+1(A) |Ot+1(A)]> τ ′) = qt(A). τ ′ is the threshold that yield the

mass hired from group A to be the same from time t and t+1. We will show that τt+1 < τ ′, and hence the

mass hired from group A will be larger at time t+ 1 compared to t. Since γt+1(A) > γt(A), we have that

τ ′ > τt. Since γt+1(B)< γt(B), the mass hired from group B at time t+1 if the threshold was τ ′ is smaller

than qt(B). Therefore, under τ ′, the total mass hired would be strictly less than C. Hence, it must be that

τt+1 < τ ′. That means that qt+1(A), the mass hired from group A at time t+ 1, will be larger than qt(A).

The same argument can be used to show that if qt(A)< qt−1(A), then qt+1(A)< qt(A).

Lastly, if qt(A) = qt−1(A), then qt(B) = qt−1(B). Therefore, since nothing changed from time t−1 to t, the

threshold τt = τt−1, hence we will have qt+1(A) = qt(A).

The limit limt→∞ qt(A) exists due to the monotone convergence theorem. □

Proof of Theorem 2. We assume g =A and g′ =B, but the same proof works if g =B and g′ =A. Let

qB =C/P (B) be the proportion hired from group B if no one from group A is hired. Let δ > 0 such that if

|q− qB| ≤ δ, then τB(q)> τB(qB)/2. That is, if qt(B) is within δ of qB, then τB(qt(B)) is lower bounded by

τB(qB)/2. Let q
′ ∈ (0, δP (B)/P (A)) be small enough that τA(q)< τB(qB)/2 for all q ∈ (0, q′) (this is possible

since τA(q)→ 0 as q→ 0 from Proposition 9.

Then, suppose q0(A) < q′. Since q0(A) < δP (B)/P (A), it must be that q0(B) ≥ qB − δ. Therefore,

τB(q0(B))> τB(qB)/2. Since q0(A)< q′, τA(q0(A))< τB(qB)/2< τB(q0(B)).
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Therefore, q1(A)< q0(A) and q1(B)> q1(B). By Proposition 4, qt(A) decreases over time and converges

to some limit q∞A , and qt(B) increases over time and converges to some limit q∞B . Moreover, we have that

qt(A)< τB(qB)/2 and qt(B)> τB(qB)/2 for all t > 0. Therefore, using Lemma 3, it cannot be that τA(q
∞
A ) =

τB(q
∞
B ). Hence, it must be that q∞A = 0. □

Proof of Theorem 3. Let q′ > 0 such that τB(q) is strictly increasing in q for all q ≤ q′ (such a q′ exists

due to Proposition 9).

Let C ′ = q′P (B), and let C <C ′. We will show that τA(q0(A))< τB(q0(B)). Note that since P (A)≤ P (B),

we have τA(q)≤ τB(q) for any q. The inequality is strict if P (A)<P (B).

Hence if q0(A) = q0(B) and P (A) < P (B), then we have τA(q0(A)) < τB(q0(A)) = τB(q0(B)). Next, if

q0(A) < q0(B), we have τA(q0(A)) ≤ τB(q0(A)) < τB(q0(B)), where the second inequality follows from the

fact that τB is increasing for q ∈ q′.

Hence we have τA(q0(A)) < τB(q0(B)) Then, by Lemma 2, qt(A) decreases over time and converges to

some limit q∞A , and qt(B) increases over time and converges to some limit q∞B , where q∞B > q∞A . Then it must

be that q∞A = 0. If it was not, then by Lemma 3, it must be that τA(q
∞
A ) = τB(q

∞
B ), which is not possible since

τB(·) is strictly increasing under the domain of interest, and τA(q)≤ τB(q) for all q. □

Proof of Theorem 4. Let q′ ∈ (0.0.5) such that τA(q) is strictly decreasing in q for all q ∈ [q′,0.5); such a

q′ exists from property (iii) of Proposition 9. Let C ′ = 2q′. Fix any C ∈ (C ′,1). The corresponding steady

state is the one where qA = qB = C/2. We would like to show that if the initial hiring rates start close to

qA = qB =C/2, then we still converge to this steady state.

Let δ > 0 such that τA(q) is decreasing for all q ∈ (C/2− δ,C/2 + δ). Suppose q0(A) < q0(B), and that

q0(A) > C/2 − δ. Then, τA(q0(A)) > τB(q0(B)). By Lemma 4, we have that qt(A) converges to inf{q >

q0(A) : τA(qt(A) = τB(qt(B))}=C/2. Therefore, if q0(A) and q0(B) start close to C/2, then we converge to

q∞(A) = q∞(B) =C/2. □

Proof of Theorem 5. Let q′ ∈ (0.0.5) such that τA(q) and τB(q) are both strictly decreasing in q for all

q ∈ (q′,0.5); such a q′ exists from property (iii) of Proposition 9. Note that τA(q
′)< τB(q

′) if P (A)<P (B).

Let τ̄ = τA(q
′). Let τ−1

g (τ) be the inverse of τg(q) over q ∈ (q′,0.5), which exists since τg(q) is strictly

decreasing over this interval. Then, any τ ∈ (0, τ̄) corresponds to a steady state for A and B for the capacity

corresponding to C = P (A)τ−1
A (τ)+P (B)τ−1

B (τ). Moreover, as τ goes from τ̄ down to 0, the corresponding

capacity C increases from some value C ′ to 0.5(P (A) + P (B)). (C ′ is the capacity corresponding to the

steady state for τ̄ .)

Therefore, for any C ∈ (C ′,0.5(P (A) + P (B)), there exists a qA, qB ∈ (q′,0.5) such that τA(qA) = τB(qB)

and P (A)qA +P (B)qB =C. This shows the first part of the theorem.

Let δ > 0 such that for all q ∈ (qA − δ, qA), τA(q) > τA(qA). We claim that under capacity C, if q0(A) ∈

(qA − δ, qA), then we converge to the outcome (qA, qB). By construction, we have τA(q0(A)) > τA(qA) =

τB(qB)< τB(q0(B)). Therefore, by Lemma 2, qt(A) will increase over time and qt(B) will decrease over time.

We need to show that qt(A) must converge to qA.

To prove this, we show that qt(A)< qA and qt(B)> qB for all t. We show this by induction. This is satisfied

for t= 0; assume it holds for t. Suppose, to the contrary, that qt+1(A)> qA. Let γA = 1/(1 + 1/(P (A)qA))
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and γB = 1/(1 + 1/(P (B)qB)) be the corresponding γ at the steady state. Since qt(A) < qA, γt(A) < γA.

Therefore, the threshold τt must be smaller than τA(qA). Since qt(B) > qB, γt(B) > γB. Then, under the

threshold τt < τA(qA) = τB(qB), the proportion hired for group B would be larger than qB. That means

qt+1(A)> qA and qt+1(B)> qB, which is a contradiction since P (A)qA +P (B)qB =C.

Lemma 3 states that qt(A) and qt(B) must converge to a limit wherein which τA(q) = τB(q), and therefore

they must converge to qA and qB.

□

B.4. Proof of Proposition 5

We will show

q(1)s (A)

q
(1)
s (B)

<
q(2)s (A)

q
(2)
s (B)

. (10)

This implies

P (1)
s (A)q(1)s (A)

P
(1)
s (B)q

(1)
s (B)

<
P (2)

s (A)q(2)s (A)

P
(2)
s (B)q

(2)
s (B)

,

since the ratio of the group sizes are the same across settings (1) and (2). Then,

ζ(1)s (A) =
P (1)

s (A)q(1)s (A)

P
(1)
s (A)q

(1)
s (A)+P

(1)
s (B)q

(1)
s (B)

<
P (2)

s (A)q(2)s (A)

P
(2)
s (A)q

(2)
s (A)+P

(2)
s (B)q

(1)
s (B)

= ζ(2)s (A),

completing the proof.

Our goal is to show (10). The hiring rate at time s for group g is the probability that the inferred skill

E[Ss(g)|Os(g)] is above the threshold τ . Note that the inferred skill has a distribution of N(0, γs(g)), where

the γs(g) is the same across settings (1) and (2). Since σs(A)<σ2
s (B), we have γs(A)>γs(B) (as defined in

(6)).

The difference between the two settings is the threshold τ . Let τ (1), τ (2) be the induced thresholds at time

s for settings (1) and (2) respectively. Since the thresholds are defined to satisfy

Ps(A)Pr(E[Ss(A) |Os(A)]> τ)+Ps(B)Pr(E[Ss(B) |Os(B)]> τ) =C,

and we have that Ps(A) and Ps(B) are higher under setting (2), it must be that τ (2) > τ (1). Then, to show

(10), we prove the following lemma.

Lemma 5 (Monotonicity of the normal–tail ratio). Let X ∼N (0, σ2
X), Y ∼N (0, σ2

Y ) with 0< σY <

σX . Define the function

g(t) =
Pr(X > t)

Pr(Y > t)
, t > 0.

Then g(t) is strictly increasing for t > 0.

Applying Lemma 5 implies that g(τ (1))< g(τ (2)), which finishes the proof.
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B.4.1. Proof of Lemma 5. We write the standard normal survival function and density as Φ̄(z) =

1−Φ(z) and φ(z) = 1√
2π
e−z2/2. Put a= σ−1

X , b= σ−1
Y ; thus 0<a< b. For every t > 0

g(t) =
Φ̄(at)

Φ̄(bt)
.

Set f(t) = log g(t). With the inverse Mills ratio h(z) =φ(z)/Φ̄(z) (z > 0),

f ′(t) = −ah(at)+ bh(bt).

Define m(z) = z h(z) = zφ(z)/Φ̄(z). Differentiating,

m′(z) =
φ(z)

Φ̄(z)2

[
(1− z2)Φ̄(z)+ zφ(z)

]
.

For z > 0 the classical Mills bound φ(z)> zΦ̄(z) implies the bracketed term is positive, so m′(z)> 0. Hence

m is strictly increasing on (0,∞).

Because a< b and m is increasing, m(bt)>m(at) for every t > 0. Dividing by t > 0 gives bh(bt)>ah(at).

Therefore, f ′(t)> 0, and hence g(t) = ef(t) is strictly increasing for t > 0.

Appendix C: Proofs for Section 6.1

This section provides proofs for the results regarding the effort models.

Lemma 6. The optimal effort, η∗(x) satisfies

η∗(x) =
1

a
Φ′((τ − η∗(x))

√
1+x)

√
1+x.

The proof of this lemma is immediate by taking the first order conditions of the definition of η∗(x):

η∗(x) = argmax
η≥0

1−Φ((τ − η)
√
1+x)− a

2
η2.

Next, we provide an upper bound on the optimal effort, η∗(σ2), as a function of τ .

Lemma 7. η∗(σ2)≤ ατ for a constant α< 0.15.

Proof of Lemma 7

Fix σ2. If σ2 is the noise variance and η∗(σ2) is the effort, then the distribution of E[S |O] is N (η∗(σ2), 1
1+σ2 ).

Our goal is to show that η∗(σ2)≤ ατ , where α< 0.15 will be a constant defined later.

We provide a geometric interpretation of the optimal effort η∗(σ2), which we summarize in Fig. 8. Let

h(x) =

√
1+σ2

t

2π
exp(− 1

2
(1+ σ2

t )x
2) be the pdf of N (0, 1

1+σ2
t
). Let ℓ(x) =−ax+ aτ be the line that represents

the derivative of the effort cost. Let Aℓ(z1, z2) and Ah(z1, z2) denote the area under ℓ and h respectively

between x = z1 and x = z2. Then, for η > 0, Aℓ(τ − η, τ) represents the cost of putting in effort η, while

Ah(τ−η, τ) represents the increase in utility in putting in effort η, compared to putting in 0 effort. Therefore,

the optimal effort η∗ is the point that maximizes Ah(τ − η, τ)−Aℓ(τ − η, τ).

Since η∗ maximizes the difference in area under the curves of h and ℓ, it must occur at an intersection of

those curves. Note that ℓ and h can have up to three intersections; this is denoted in Fig. 8 as x1, x2 and

x3. We show that the optimal effort occurs at the last intersection of ℓ and h.

Claim 1. η∗(σ2) = τ −x3, where x3 is the largest intersection of ℓ and h.
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Figure 8 h(x) represents the distribution of E[S |O], and ℓ(x) represents the derivative of the effort cost. This

plot shows an example of a case where the two curves intersect three times.

We defer the proof of this claim to after the proof of this result.

Fix τ and a, and let x0 =Rτ , where R= 1
2

(
1+

√
1− 2 exp(−1/2)√

2π

)
≈ 0.859. We will show that ℓ(x0)>h(x0).

If this is the case, then the last intersection of ℓ and h will be after x0. Since a≥ 2/τ2, ℓ(x0) = ℓ(Rτ)≥ 2(1−R)

τ
.

We will show that h(Rτ)≤ 2(1−R)

τ
. More specifically, we will show this holds under any zero-mean normal

distribution that h can represent as well as any τ . That is, we will show the following statement: for any

x> 0, ϕ(x,σ)≤ 2R(1−R)

x
for any σ > 0, where ϕ(x,σ) = 1

σ
√
2π

exp(− 1
2

x2

σ2 ) is the pdf of the normal distribution

with mean 0 and variance σ2.

Fix x> 0. We will find the σ that results in the highest value of ϕ(x,σ). We take the derivative of ϕ(x,σ)

with respect to σ:

ϕσ(x,σ) =
1√
2π

(
− 1

σ2
exp(−1

2

x2

σ2
)+

1

σ
exp(−1

2

x2

σ2
)(−1

2
x2)(−2)σ−3

)

=
exp(− 1

2
x2

σ2 )

σ2
√
2π

(
−1+

x2

σ2

)
.

Then, ϕσ(x,σ) = 0 when x= σ. Therefore, ϕ(x,σ) is maximized when σ = x. This yields the desired result:

for any x and σ,

ϕ(x,σ) =
1

σ
√
2π

exp

(
−1

2

x2

σ2

)

≤ 1

x
√
2π

exp

(
−1

2

)
=

2R(1−R)

x
.

R was defined exactly so that the last step goes through. ■
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Proof of Claim 1

Let Aℓ(z1, z2) and Ah(z1, z2) denote the area under ℓ and h respectively between x= z1 and x= z2. Recall

that η∗ is the point that maximizes Ah(τ − η∗, τ)−Aℓ(τ − η∗, τ).

If ℓ and h have only one intersection, then it is clear that η∗ = τ − x0, where x0 is the intersection of the

curves.

Now, assume that ℓ and h have three intersections as in Fig. 8. Our goal is to show that η∗ = τ −x3, rather

than η∗ = τ −x1. We can see that clearly, if η= τ −x3, then the area under h is larger than the area under

ℓ, and therefore the utility of putting in effort τ − x3 is larger than the utility of putting in zero effort. We

will show that putting in effort η = τ − x1 (the first intersection) will result in a utility that is lower than

putting in zero effort.

We will let Aℓ(z1,2 ) and Ah(z1, z2) denote the area under ℓ and h respectively between x= z1 and x= z2.

Assume, to the contrary, that there exists three distinct points of contact, and that Ah(x1, τ)≥ Aℓ(x1, τ).

We will derive a contradiction. Recall that we assume a≥ 2/τ2, which implies that Aℓ(0, τ)≥ 1.

Let σ2 be the variance of the normal distribution that h represents. Note that the concavity of h changes

from negative to positive as x increases from 0. It is easy to show that the inflection point of h occurs at

x= σ, and the derivative of h at that point is h′(σ) =− e−1/2

σ2
√
2π
. Then, if ℓ(x) has three points of contact with

h, it must be that x1 occurs during the parts when h is concave; that is, it must be that

x1 <σ. (11)

Moreover, the slope of the line ℓ(x) must be less steep than h′(σ); that is, it must be that

a<
e−1/2

σ2
√
2π

.

If it was the case that a≥ e−1/2

σ2
√
2π
, then the line ℓ would intersect h at most once.

Therefore, we have that a satisfies both a≥ 2/τ2, and a< e−1/2

σ2
√
2π
. Combining this implies

τ > σ

√
2
√
2πe1/2 > 2.87σ. (12)

Obviously, Ah(x1, τ) ≤ 1/2. But note that by assumption, we have Aℓ(0, τ) ≥ 1. Since we’re assuming

Ah(x1, τ) ≥ Aℓ(x1, τ), it must be that x1 is large enough such that Aℓ(x1, τ) ≤ 1/2. Therefore, it must be

that

x1 ≥ (1− 1/
√
2)τ.

Combining this with (12) results in

x1 ≥ (1− 1/
√
2)2.87σ > 0.84σ.

Now, we will go through the above logic one more time. Since x1 > 0.84σ, we have Ah(x1, τ)< 1−Φ(0.84)<

0.21. Therefore, it must be that Aℓ(x1, τ)< 0.21. Using that Aℓ(0, τ)≥ 1, it must be that x1 > (1−
√
0.21)τ >

0.54τ . Using (12), we get

x1 > 0.54τ ≥ 0.54(2.87σ)> 1.54σ.

This is a contradiction to (11), and we are done. ■
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Proof of Theorem 6

We prove this theorem by using the following claims.

Claim 1: Similar to Lemma 1, for large enough a, the function

f(x) =
1

P b

(
1−Φ(

(
τ − η∗(x)

)√
1+x

)b

where the optimal effort is given by

η∗(x) = argmax
η≥0

1−Φ((τ − η)
√
1+x)− a

2
η2

intersects y= x in at most two points.

Proof of Claim 1: Using the same notation and line of argument as the one in the proof of Lemma 1, we

argue that

L(x) =
1−Φ(B(x))

Φ′(B(x))
,

where

B(x) = (τ − η∗(x))
√
1+x

is decreasing in x and

R(x) = bxB′(x)

is increasing in x. Let us start by proving L(x) is decreasing. We can write

L′(x) =

(
−1+

B(x)(1−Φ(B(x)))

Φ′(B(x))

)
B′(x).

Notice that the first term is negative (because 1−Φ(t)<Φ′(t)/t for all t∈R+), and therefore, it suffices to

prove that B(x) is increasing in x, which we prove next.

B′(x) can be written as

B′(x) =−η∗
x(x)

√
1+x+

1

2

τ − η∗(x)√
1+x

.

Then to show that B′(x)> 0 is equivalent to showing η∗
x(x)<

τ−η∗(x)
2(1+x)

. We now replace the term η∗
x(x) with

an expression that depends on η∗(x). Recall that the first-order condition (Lemma 6) gives us

η∗(x) =
1

a
Φ′((τ − η∗(x))

√
1+x)

√
1+x.

We take the derivative of both sides of the above equation, which yields

aη∗
x(x) =Φ′′

(
(τ − η∗(x))

√
1+x

)(
−η∗

x(x)
√
1+x+(τ − η∗(x))

1

2
√
1+x

)√
1+x

+Φ′((τ − η∗(x))
√
1+x)

1

2
√
1+x

.

Simplifying the above expression and using Φ
′′
(y) =−yΦ′(y) results in

η∗
x(x) =

1

2

−
(
τ − η∗(x)

)2√
1+x+(1+x)−1/2

a
Φ′((τ−η∗(x))

√
1+x)

− (τ − η∗(x))(1+x)3/2

=
η∗(x)

(
−1
2

(
τ − η∗(x)

)2
+ 1

2(1+x)

)
1− η∗(x)(τ − η∗(x))(1+x)

. (13)
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Using this, to show that B′(x)> 0 is equivalent to showing

η∗(x)
(

−1
2

(
τ − η∗(x)

)2
+ 1

2(1+x)

)
1− η∗(x)(τ − η∗(x))(1+x)

<
τ − η∗(x)

2(1+x)
. (14)

If the denominator of the LHS is positive, then (14) holds if and only if η(x)< τ/2. The latter is true due to

Lemma 7.

We now show that the denominator of the LHS of Eq. (14) is indeed positive. We write this as the following:

1− η∗(x)(τ − η∗(x))(1+x) = (η∗(x))2(1+x)− η∗(x)τ(1+x)+ 1 (15)

If we take x as fixed, the above is a quadratic with respect to η∗(x). The roots of this quadratic are

1
2
(τ ± 1

2

√
τ2 − 4/(1+x)). If the roots exist, note that the smaller root is larger than 1

4
τ ; if η∗(x) is smaller

than the root, then (15) is positive. From Lemma 7, η∗(x)< 0.15τ , hence this is always true. If the roots do

not exist, then (15) is always positive for any η∗(x). Therefore, (15) is positive and hence B′(x)> 0.

We next prove that xB′(x) (and therefore, bxB′(x)) is increasing. Notice that the optimal effort is given

by

η∗(x) =
1

a
Φ′
((

τ − η∗(x)
)√

1+x
)√

1+x. (16)

Taking the first-order derivative of the above expression results in

η∗
x(x) =

1
2
η∗(x)

(
−
(
τ − η∗(x)

)2
+ 1

1+x

)
1− η∗(x)(τ − η∗(x))(1+x)

. (17)

Now taking the first-order derivative of xB′(x) with respect to x yields

d

dx

(
xB′(x)

)
=
τ − η∗(x)

2
√
1+x

−

√
1+x

(
1

1+x
− (τ − η∗(x))2

)
η∗(x)

2
(
1− (1+x)(τ − η∗(x))η∗(x)

)
+x

(
− τ − η∗(x)

4(1+x)
3
2

−
1

1+x
− (τ − η∗(x))2η∗(x)

4
√
1+x

(
1− (1+x)(τ − η∗(x))η∗(x)

) − η∗
x(x)

2
√
1+x

−

√
1+x

(
1

1+x
− (τ − η∗(x))2

)
η∗
x(x)

2
(
1− (1+x)(τ − η∗(x))η∗(x)

)
−

√
1+xη∗(x)

(
− 1

(1+x)2
+2(τ − η∗(x))η∗

x(x)
)

2
(
1− (1+x)(τ − η∗(x))η∗(x)

)
+

√
1+x

(
1

1+x
− (τ − η∗(x))2

)
η∗(x)

(
−(τ − η∗(x))η∗(x)− (1+x)(τ − η∗(x))η∗

x(x)+ (1+x)η∗(x)η∗
x(x)

)
2
(
1− (1+x)(τ − η∗(x))η∗(x)

)2
 .

Using (17) in the above expression results in an equation that only involves η∗(x) and not its derivative:

−η∗(x)+ τ

2
√
1+x

−
η∗(x)

√
1+x

(
−(−η∗(x)+ τ)2 + 1

1+x

)
2
(
1− η∗(x)(−η∗(x)+ τ)(1+x)

)
+x

(
−−η∗(x)+ τ

4(1+x)
3
2

−
η∗(x)

√
1+x

(
−(−η∗(x)+ τ)2 + 1

1+x

)2
4
(
1− η∗(x)(−η∗(x)+ τ)(1+x)

)2 −
η∗(x)

(
−(−η∗(x)+ τ)2 + 1

1+x

)
2
√
1+x

(
1− η∗(x)(−η∗(x)+ τ)(1+x)

)
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−
η∗(x)

√
1+x

(
− 1

(1+x)2
+

η∗(x)(−η∗(x)+τ)(−(−η∗(x)+τ)2+ 1
1+x )

1−η∗(x)(−η∗(x)+τ)(1+x)

)
2
(
1− η∗(x)(−η∗(x)+ τ)(1+x)

)
+ η∗(x)

√
1+x

(
−(−η∗(x)+ τ)2 +

1

1+x

)
−η∗(x)(−η∗(x)+ τ)+

η∗(x)2(1+x)(−(−η∗(x)+τ)2+ 1
1+x )

2(1−η∗(x)(−η∗(x)+τ)(1+x))
− η∗(x)(−η∗(x)+τ)(1+x)(−(−η∗(x)+τ)2+ 1

1+x )
2(1−η∗(x)(−η∗(x)+τ)(1+x))

2
(
1− η∗(x)(−η∗(x)+ τ)(1+x)

)2 )
. (18)

Now, as a→∞, we argue that η∗(x)→ 0 uniformly. To see this, we make use of Lemma 7. In particular, we

can write

η∗(x) =
1

a
Φ′
((

τ − η∗(x)
)√

1+x
)√

1+x

(a)

≤ 1

a
Φ′
(
.85τ

√
1+x

)√
1+x

where (a) follows from Lemma 7. Noting that Φ′
(
.85τ

√
1+x

)√
1+x is uniformly bounded and thus as

a→∞, we have that η∗(x)→ 0 uniformly. Therefore, in the limit as a→∞, (18) becomes

τ(2+x)

4(1+x)3/2
,

which is positive. Therefore, for large enough a, Claim 1 holds. ■

Claim 2: There exists σ̃2 such that the optimal effort η∗(σ2
t ) for σ

2
t ≥ σ̃2 is decreasing.

Proof of Claim 2: Recall that the first-order condition gives us

η∗(x) =
1

a
Φ′((τ − η∗(x))

√
1+x)

√
1+x.

Notice that η∗(x) appears on both sides of the above equation, and we are interested in evaluating its

derivative η∗
x(x). In this regard, we take the derivative of both sides of the above equation yields

aη∗
x(x) =Φ′′

(
(τ − η∗(x))

√
1+x

)(
−η∗

x(x)
√
1+x+(τ − η∗(x))

1

2
√
1+x

)√
1+x

+Φ′((τ − η∗(x))
√
1+x)

1

2
√
1+x

.

Simplifying the above expression and using Φ
′′
(y) =−yΦ′(y) results in

η∗
x(x) =

1

2

−
(
τ − η∗(x)

)2√
1+x+(1+x)−1/2

a
Φ′((τ−η∗(x))

√
1+x)

− (τ − η∗(x))(1+x)3/2

=
η∗(x)

(
−1
2

(
τ − η∗(x)

)2
+ 1

2(1+x)

)
1− η∗(x)(τ − η∗(x))(1+x)

(a)

≤η∗(x)
− 1

8
τ2 + 1

16
τ2

1
2

< 0,

where (a) follows by taking x large enough so that 1
1+x

≤ τ2

8
and η∗(x)≤min{ 1

2τ(1+x)
, τ
2
}. ■

We now proceed with the proof of the theorem. Similar to the proof of Theorem 1, we need to show that

for large enough x, we have f ′(x)> 1 where

f(x) =
1

P b

(
1−Φ((τ − η∗(x))

√
1+x)

)b
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and

η∗(x) = argmax
η≥0

1−Φ((τ − η)
√
1+x)− a

2
η2.

The derivative of f(x) can be written as

f ′(x) =
bΦ′((τ − η∗(x))

√
1+x)

(
−η∗

x(x)
√
1+x+(τ − η∗(x)) 1

2
√
1+x

)
P b

(
1−Φ((τ − η∗(x))

√
1+x)

)b+1

(a)

≥
bΦ′((τ − η∗(x))

√
1+x)

(
(τ − η∗(x)) 1

2
√
1+x

)
P b

(
1−Φ((τ − η∗(x))

√
1+x)

)b+1

(b)

≥ b(τ − η∗(x)
√
1+x)b+2

P b2(1+x)Φ′((τ − η∗(x))
√
1+x)b

(c)
=
b((τ − η∗(x))

√
1+x)b+2(1+x)b

2P babη∗(x)b
(d)

> 1

where (a) follows from invoking Claim 2 for large enough x, (b) follows from 1−Φ(t) < Φ′(t)
t

, (c) follows

from (16), and (d) follows from the fact that for large enough x, η∗(x) goes to zero. ■

Proof of Proposition 6

Fix an instance where σ2
∗ <∞. From Lemma 6 the first-order condition for the optimal effort is

η∗(σ2) =
1

a
Φ′((τ − η∗(σ2))

√
1+σ2)

√
1+σ2. (19)

For any fixed σ2, if η = 0, then the RHS is positive, and hence this does not satisfy the above equation.

Therefore, η∗(σ2
∗)> 0.

On the other hand, since η∗(σ2) < 0.85τ by Lemma 7, the RHS of (19) is upper bounded by

1
a
Φ′(0.15τ

√
1+σ2)

√
1+σ2, which approaches 0 as σ2 →∞. Therefore, limσ2→∞ η∗(σ2) = 0. ■

Proof of Proposition 7

The sequence of noise variances are {σ̄2
t }∞t=1 such that

σ̄2
t+1 = αf(σ̄2

t )+ (1−α)σ̄2
t for all t,

where f(σ2) = 1
P b·q(τ ;σ2)b

, same as the baseline model. Therefore, the convergence properties of the sequence

{σ̄2
t }∞t=1 are the same as the original sequence. ■

Proof of Proposition 8

First, suppose M < σ̄2. Then f(x;P, τ) intersects the line y = x once at x=min{M,σ2
∗}, as seen in the left

plot of Fig. 6. Therefore, there is one active steady state at min{M,σ2
∗}. Next, assume M ≥ σ̄2. Then, the

last intersection of f(x;P, τ) with y = x occurs at x=M (as seen in the right plot of Fig. 6), and this is a

stable steady state. Hence in this case, there are two active stable steady states at σ2
∗ and at M . The proof

of the dynamics follows from the same reasoning as Theorem 1. ■
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Appendix D: Alternative Update Rule: Feature Informativeness

We present a microfoundation that motivates the noise update rule (2) in Section 6.4.

Suppose Ot ∈Rk represents k ∈N different features about the applicant. However, only one of these features

is informative about the applicant’s skill, represented by Z ∈ [k]. However, the firm does not know Z. The

observation Ot takes the form:

Ot =


(St + δ, ε1, . . . , εk−1) if Z = 1,

(ε1, St + δ, . . . , εk−1) if Z = 2,
...

(ε1, ε2, . . . , St + δ) if Z = k,

where δ∼N (0, σ2) and ε1, . . . , εk−1 ∼N (0,1+σ2) independently, for some parameter σ2 > 0. We still assume

that St ∼N (0,1). Note that each element of Ot has the same distribution, which is N (0,1+σ2).

Belief and dynamics. Let ρt(j) ∈ [0,1] be the firm’s belief at time t on the probability that j is the

informative feature, Z = j. We assume that Z is drawn uniformly at random from [k], and hence ρ1(j) = 1/k

for all j ∈ [k]. At time t, using the current belief (ρt(j))j∈[k], the firm computes the inferred skill E[St |Ot]

for each applicant and hires them if and only if E[St |Ot]> τ . Once an applicant is hired, the firm gets to

observe their true skill, St. Then, the firm uses the observations (Ot, St) for all hired applicants and uses this

to update their belief on which feature is informative for the next round, (ρt+1(j))j∈[k].

We show that the update rule given by (2) approximates the dynamics resulting from the above model.

Proposition 10. At round t, there exists constants c1, c2 > 0, b(ρt) > 0 which depends on ρt(j), and

a∈ (0,1) such that for any ϵ1, ϵ2 > 0 and δ ∈ (0,1), there exists an n0 such that if n≥ n0 applicants are hired

at time t, then Φt+1 =N (0, σ2), where with probability at least 1− δ,

σ2 ∈
(
c1 +

c2
1+ b(ρt) (a+ ϵ1)n

− ϵ2, c1 +
c2

1+ b(ρt) (a− ϵ1)n
+ ϵ2

)
.

Relation to (2). The dynamics of the above feature informativeness model is approximated by the update

rule in (2), where we interpret Pqt−1 as the number of applicants hired, n. By doing so, we are simplifying

two aspects. First, we are considering a deterministic version of the underlying stochastic system (i.e., we

assume ϵ1 = ϵ2 = 0 in Proposition 10). Second, we replace c(ρt) with a constant c3, which implies that the

learning of Z does not accumulate over time. This is analogous to the assumption in Section 2 that the noise

is only a function of the hires in the previous time step; we assume the firm learns how to evaluate applicants

at time t from the those hired from time t− 1, but the firm does not leverage its learnings from time t− 2

or further back.

We next provide the proof of Proposition 10 and that of Theorem 7.

Proof of Proposition 10

Fix a round t. Let n be the number of hired applicants at round t, and let (Oi, Si)i∈[n] be the observations

and skills of these hired applicants. Given the prior belief (ρt(j))j∈[k], the posterior belief for Z can be written

as:

P (Z = j | (Oi, Si)
n
i=1) =

ρt(j)P
(
(Oi, Si)

n
i=1 |Z = j

)∑m

j′=1 ρt(j′)P
(
(Oi, Si)ni=1 |Z = j′

)
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=
1

1+
∑n

j′=1,j′ ̸=j

ρt(j′)
ρt(j)

P((Oi,Si)
n
i=1

|Z=j′)
P((Oi,Si)

n
i=1

|Z=j)

=
1

1+
∑n

j′=1,j′ ̸=j

ρt(j′)
ρt(j)

exp
(
− logΛn(j, j′)

) ,
where Λn(j, j

′) =
P((Oi,Si)

n
i=1|Z=j)

P((Oi,Si)
n
i=1

|Z=j′)
is the likelihood ratio of the observations under Z = j and Z = j′. Using

the independence of signals across different applicants, we can write logΛn(j, j
′) as

logΛn(j, j
′) =

n∑
i=1

log
P
(
Oi, Si |Z = j

)
P
(
Oi, Si |Z = j′

) .
Let j∗ ∈ [k] be the true value of Z. We can use the law of large numbers to write

lim
n→∞

1

n
Λn(j, j

′)
P→E(O,S)∼P (·,·|Z=j∗)

log( P
(
O,S |Z = j

)
P
(
O,S |Z = j′

))
 .

Therefore, for any ϵ, δ > 0, there exists an n0 such that if n ≥ n0,
1
n
Λn(j, j

′) is within ϵ of its expectation

with probability at least 1− δ.

We now evaluate the expectation on the right hand side, considering three cases. Denote by Pj the

distribution of (O,S) when Z = j. First, suppose j = j∗ and j′ ̸= j∗. Then, we have

E(O,S)∼P (·,·|Z=j∗)

log( P
(
O,S |Z = j

)
P
(
O,S |Z = j′

))
=DKL

(
Pj∗ ||Pj′

)
> 0,

where DKL is the Kullback–Leibler divergence. Similarly, if j′ = j∗ and j ̸= j′, then

E(O,S)∼P (·,·|Z=j∗)

log( P
(
O,S |Z = j

)
P
(
O,S |Z = j′

))
=−DKL

(
Pj∗ ||Pj′

)
< 0,

Lastly, if j, j′ ̸= j∗, then

E(O,S)∼P (·,·|Z=j∗)

log( P
(
O,S |Z = j

)
P
(
O,S |Z = j′

))
= 0.

This is because if Z = j∗, and j, j′ ̸= j∗, then the j and j′th entries ofO is pure noise, and these entries are inde-

pendent and have the same distribution. Therefore, for any realization of (O,S) where the ratio P (O,S|Z=j)

P (O,S|Z=j′)

corresponds to a/b, there is a realization (O′, S′) with the same likelihood where the ratio
P(O′,S′|Z=j)
P (O′,S′|Z=j′)

= b/a.

These two samples cancel out to 0, and this occurs for all samples.

Let D=DKL

(
Pj∗ ||Pj′

)
> 0 for j′ ̸= j∗. Fix ϵ∈ (0,D) and δ > 0. There exists an n0 such that if n> 0, the

following two expressions hold with probability greater than 1− δ. First, if j = j∗, then

ρt+1(j)∈

(
1

1+Cj(ρt)(e−D+ϵ)n
,

1

1+Cj(ρt)(e−D−ϵ)n

)
, (20)

where Cj(ρt) =
∑n

j′=1,j′ ̸=j

ρt(j
′)

ρt(j)
. Second, if j ̸= j∗, then

ρt+1(j)≤
1

1+ ρt(j)

ρt(j′)
(eD−ϵ)n

. (21)
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We now consider the distribution of E[St+1 |Ot+1]. When the firm observes Ot+1, the inferred skill can be

written as

E[St+1 |Ot+1] =

k∑
j=1

E[St+1 |Ot+1,Zt+1 = j]Pr(Zt+1 = j |Ot+1).

Since the distribution of Ot+1 is equal under any value of Zt+1, we have Pr(Zt+1 = j | Ot+1) = Pr(Zt+1 =

j) = ρt+1(j). If Ot+1(j) is the j’th element of Ot+1, then

E[St+1 |Ot+1] =

k∑
j=1

ρt+1(j)
Ot+1(j)

1+σ2
.

Since Ot+1(j)∼N (0,1+σ2), the distribution of E[St+1 |Ot+1] is then

E[St+1 |Ot+1]∼N

0,
1

1+σ2

k∑
j=1

ρt+1(j)
2

 .

Therefore, we need to show that γ = 1
1+σ2

∑k

j=1 ρt+1(j)
2 has the form stated in the result.

Consider the sum
∑k

j=1 ρt+1(j)
2. For j ̸= j∗, we have

ρt+1(j)
2 ≤ 1

(1+ ρt(j)

ρt(j′)
(eD−ϵ)n)2

.

Note that eD−ϵ > 1, and hence the term (eD−ϵ)n grows exponentially large in n. Therefore, ρt+1(j)
2 → 0 as

n→∞, and hence this term can be incorporated into ϵ2. For j = j∗, we have

ρt+1(j
∗)2 ≤ 1

1+2Cj(ρt)(e−D−ϵ)n +Cj(ρt)2(e−D−ϵ)2n

In the denominator, the second term represents the expression c(ρt)(a− ϵ1)
n, where c(ρt) = 2Cj(ρt), and

a= e−D. The third term is negligible compared to the second term for large n, and hence can be incorporated

into ϵ1. This shows the upper bound σ2 ≤ c1+
c2

1+c(ρt) (a−ϵ1)n
+ ϵ2. We can use the same analogous arguments

to show the lower bound, and this proves the desired result.

Proof of Theorem 7

Recall that the distribution of E[St |Ot] takes the form :

E[St |Ot]∼N

(
0, c1 +

c2
1+ c3 aPqt−1

)
.

First, we assume c1 = 0. Let γt = b aPqt−1 . We will characterize how the term γt changes over time. At

time t, the proportion of the population hired is

qt =Pr

(
N

(
0,

c2
1+ γt

)
> τ

)
= 1−Φ

(
τ̃
√

1+ γt

)
,

where τ̃ = τ√
c2
. Let w(x) be the function that maps the γt value from one time step to the next, which takes

the following form:

w(x) = b · aP ·
(
1−Φ(τ

√
1+x)

)
. (22)

Our goal is to understand how w(x) behaves in relation to y= x. If w(x)>x, then the γt value increases,

while if w(x)<x, then the γt values decreases. w(x) = x is a steady state.
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We take the derivative of w(x):

w′(x) = b · loga · aP ·
(
1−Φ(τ̃

√
1+x)

)
·P · (−ϕ(τ̃

√
1+x)) · τ̃ · 1

2
(1+x)−1/2 (23)

=
bτ̃P log(1/a)

2
· a

P ·
(
1−Φ(τ̃

√
1+x)

)
·ϕ(τ̃

√
1+x)√

1+x
. (24)

It is easy to see that w′(x) is non-negative for all x≥ 0. We define the space of parameters Θ∈ (0,1)×R+:

Θ=
{
(a, b) : b≥B, exp(−b)≤ a≤ b−C

}
for constants B > 0,C ≥ 2

1−Φ(τ)
. We show that an instance with these parameters have two distinct steady

states.

Proposition 11. If (a, b) ∈Θ, there exist two points x1 < x2 where w(xi) = xi, and there exists a δ > 0

such that w(x)>xi for x∈ (xi − δ,xi) and w(x)<xi for x∈ (xi, xi + δ) for both i= 1,2.

Proposition 11 says that there are at least two intersections of w(x) with y= x where w(x) approaches from

above (w(x)>x right before the intersection, but w(x)<x right after the intersection). These intersections

denote a stable steady state, and this result says that there are at least two distinct steady states.

We will show that there is a parameter regime for a and b where the following conditions hold:

(a) w(0)> 0.

(b) w(0)≤ 0.01.

(c) w′(x)≤ 1/2 for all x∈ [0,0.1].

(d) w(0.98b)≥ 0.99b.

We now show that properties (a)-(d) hold when (a, b)∈Θ. Property (a) holds for any a, b > 0.

Property (d). Let B1 > 0 such that for all b≥B1,

a≥ 0.99
1

1−Φ(τ̃
√

1+0.98b) . (25)

Such a B1 exists since a≥ exp(−b), and the RHS of (25) tends to 0 super-exponentially. Then,

w(0.98b) = b · a1−Φ(τ̃
√
1+0.98b)

≥ b · 0.99
1−Φ(τ̃

√
1+0.98b)

1−Φ(τ̃
√

1+0.98b)

= 0.99b.

Property (b). Since C ≥ 2 · 1
1−Φ(τ̃)

, there exists B2 > 0 such that if b≥B2,

a≤
(
1

b

)C

≤
(
0.01

b

) 1
1−Φ(τ̃)

.

Then, property (b) follows:

w(0) = b · a1−Φ(τ̃)

≤ b ·
(
0.01

b

) 1−Φ(τ̃)
1−Φ(τ̃)

≤ 0.01.
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Let B =max{B1,B2}.

Property (c). Since a≥ exp(−b), then log(1/a)≤ b. Using this and the upper bound on a, we have

w′(x) =
bτ̃ log(1/a)

2
· a

(
1−Φ(τ̃

√
1+x)

)
·ϕ(τ̃

√
1+x)√

1+x

≤ b2τ̃

2
· b

−C
(
1−Φ(τ̃

√
1+x)

)
·ϕ(τ̃

√
1+x)√

1+x

=
τ̃ϕ(τ̃

√
1+x)

2
√
1+x

· b2−C
(
1−Φ(τ̃

√
1+x)

)
(26)

For all x ∈ [0,0.1], the first term in (26) is bounded below and above by a constant, and the expression

(1−Φ
(
τ̃
√
1+x

)
) is also bounded below and above. Then, one can choose C large enough so that the entire

expression in (26) is less than 1/2 for all b≥B.

Proof of Proposition 11. We provide the proof of Proposition 11 given that the above conditions hold.

(a) states that the function starts positive, so w(x) starts above y = x. Combining (b) and (c) implies that

w(0.1)≤ 0.001+ 1
2
0.1< 0.1. Therefore, there is an intersection of w(x) and y= x at some point x1 ∈ (0,0.1).

Next, we will show that the second intersection x2 is close to b. Note that w(x)≤ b for all x≥ 0. Since

w(0.98b)≥ 0.99b > 0.98b, w(x) is larger than y = x when x= 0.98b. But when x≥ b, we have w(x)≤ b. So

there must be an intersection of w(x) with y= x for x2 ∈ (0.98b, b). □

Lastly, Proposition 11 assumes that c1 = 0. Since the impact of c1 on qt is continuous, it also impacts the

function w(s) in a continuous fashion. Therefore, if c1 > 0 is small enough, the steady states will remain the

same.
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