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The Backfiring Effect of Weak AI Safety Regulation

Benjamin Laufer∗, Jon Kleinberg†,§, Hoda Heidari‡,§

Abstract

Recent policy proposals aim to improve the safety of general-purpose AI, but there
is little understanding of the efficacy of different regulatory approaches to AI safety.
We present a strategic model that explores the interactions between safety regulation,
the general-purpose AI technology creators, and domain specialists–those who adapt
the technology for specific applications. Our analysis examines how different regulatory
measures, targeting different parts of the AI development chain, affect the outcome of
this game. In particular, we assume AI technology is characterized by two key at-
tributes: safety and performance. The regulator first sets a minimum safety standard
that applies to one or both players, with strict penalties for non-compliance. The
general-purpose creator then invests in the technology, establishing its initial safety
and performance levels. Next, domain specialists refine the AI for their specific use
cases, updating the safety and performance levels and taking the product to market.
The resulting revenue is then distributed between the specialist and generalist through
a revenue-sharing parameter. Our analysis reveals two key insights: First, weak safety
regulation imposed predominantly on domain specialists can backfire. While it might
seem logical to regulate AI use cases, our analysis shows that weak regulations tar-
geting domain specialists alone can unintentionally reduce safety. This effect persists
across a wide range of settings. Second, in sharp contrast to the previous finding, we
observe that stronger, well-placed regulation can in fact mutually benefit all players
subjected to it. When regulators impose appropriate safety standards on both general-
purpose AI creators and domain specialists, the regulation functions as a commitment
device, leading to safety and performance gains, surpassing what is achieved under no
regulation or regulating one player alone.

1 Introduction

As Generative Artificial Intelligence (AI) and related technologies gain traction, there is an
increasing number of proposals for regulation to improve safety. Many of these proposals
must at some level grapple with the following question: Who should be targeted with AI
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regulation–the producers of general-purpose AI models1 or the domain-specialists who adapt
the technology for specific use cases? There are seemingly reasonable positions that favor
regulating one entity, the other, both, or neither. For example, the downstream domain
specialists and deployers are some of the last entities to exert influence on the technology
before it interacts with consumers directly, so it is perhaps reasonable that regulation for
consumer safety might target requirements at these entities. In contrast, the upstream
entities developing general-purpose models exert impact on these models earlier in their
development trajectories, facilitating or hindering downstream adoption, which might justify
certain regulatory requirements including disclosure mandates [26] and liability standards.
Of course, even regulations that solely target one of these actors might impact the other,
because their incentives and decisions are intertwined.

We have seen variants of these debates play out as different jurisdictions and policymakers
have proposed various regulatory approaches to AI. A number of existing regulation propos-
als leverage the observation that AI is developed by multiple, interacting actors. Examples
include Colorado’s AI Act, California’s Senate Bill 1047, and the EU AI Act. These frame-
works attempt to define the relevant actors, such as base developers and downstream de-
ployers, in order to design conditions and stipulations for determining whether and to whom
liability standards, disclosure requirements, or other interventions apply. These conditions
and stipulations vary across proposals and policies, with possibly significant implications for
the incentives of the players involved in the development of AI technologies and applications.

Modeling the impact of regulatory regimes on AI performance and safety.
Given that there are a range of different possible approaches to targeting AI regulation and
assessing the impact of each alternative empirically is prohibitive, formal models can enable
reasoning about the various regulatory impacts. This paper puts forward a strategic model of
the interactions between a general-purpose technology producer (G) and a domain specialist
(D), building on the “fine-tuning games” model proposed by Laufer et al. [24]. As the two
actors develop an AI technology, they each decide whether and how to invest in two key
attributes of technology: performance, denoted by α, and safety, denoted by β. We assume
these actors are operating in a market; each actor experiences some cost for their investment
in safety and performance, and obtains a share of the revenue out of the deployment of the
AI product/service in the market.

To provide some intuition for what this investment pattern might look like, imagine a firm,
G, producing a general-purpose language model that may be used in three domains – say, by
healthcare providers (D1), law firms (D2), and financial services (D3). The general-purpose
developer moves first, and in light of the particular costs she faces and the anticipated
responses from the downstream players, she chooses a certain strategy, represented by a
pairing of performance and safety investments (α0, β0). Once this investment has been made,
the attributes of the technology at this stage can be thought of as akin to a ‘base camp,’
from which domain specialists may choose to climb further by investing their own effort
toward improving the technology’s safety and/or performance in their respective domains.
Of course, each domain faces their own delicate balance of safety risks and performance

1Such AI models are at times referred to as “foundation” or “frontier” models [4, 8]. Throughout this
paper, we will use the technology of general-purpose AI to refer to large-scale models that can be adapted
to a wide range of tasks and domains.
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costs, so the ultimate safety and performance pairs (αi, βi) (i = 1, 2, 3) differ across the three
domains. See Figure 1 (a) for a visualization of the investment decisions make by G, D1,
D2, and D3.

Equipped with this intuition about how these actors behave in an unregulated market,
we now turn to our notion of regulation. We conceive of regulation as shaping the game in
which players choose their strategies. In particular, this paper will focus specifically on safety
regulation. We assume regulation imposes a constraint in the form of a lower bound on the
players’ choice of safety investment (i.e., βi’s). If a player does not meet the regulatory lower
bound on safety, they will be penalized. This regulatory regime can be described using two
parameters (θG, θD), representing the set of thresholds constraining the strategy space of G
and D, respectively. The regulation can target the domain-specialist only (θG = 0, θD > 0),
the generalist only (θG = θD > 0), both players (θD > θG > 0), or neither (θG = θD = 0). In
addition to the decision of who to target, of course, the regulation encodes a decision about
what level to set the safety standards. Smaller values of θ are less costly to comply with,
and hence capture weaker safety requirements.

First insight: Weak safety regulation can backfire. Turning back to our example
in Figure 1, we observe that something striking happens in the second panel, which de-
picts a scenario where regulation is targeted at the domain-specialist. In this scenario, the
safety investment has gotten worse. How could safety regulation – a simple floor dictating
a minimum investment level – lead to a less safe product? The mechanism leading to this
phenomenon arises because the generalist G is aware of the regulatory safety requirements
imposed on domain-specialists, and can use it to her advantage. When the regulator re-
quires that a technology meets a certain level of safety investment by the time it reaches the
market, the generalist has an opportunity to engage in a sort of free-riding behavior. The
generalist is comfortable setting up the base camp at lower altitude, because she knows that
the domain-specialist nonetheless has to climb to a level of investment that complies with
regulation.2

The scenario described above depicts a single instance of a more general phenomenon,
which we describe as regulatory backfiring. A safety regulation backfires if it yields a total
investment in safety lower than the safety investment achieved with no regulation. We
identify a number of properties of this phenomenon – for example, backfiring only occurs
when the regulation is weak, meaning the floor on safety is at or below the level reached in
the absence of regulation. Backfiring can occur when D is targeted with regulation or when
both G and D are targeted with regulation, but does not occur when only G is targeted. Our
results suggest that this non-monotonic effect of regulation occurs for a broad set of games
with different cost and revenue functions. Analytically, we prove that backfiring occurs for all
quadratic-cost games in which the players invest any non-zero amount in both performance
and safety without regulation (these sets of games are defined more formally in Section 4.2).

Second insight: Properly-placed safety regulation can improve the technology
and the players’ utilities. While weak regulation targeted predominantly at the domain-

2Of course, there may be scenarios where the regulation is too high, or the generalist’s investment is too
low, such that the domain specialist gives up entirely and abstains from any involvement in the technology’s
production. We handle these scenarios in our analysis of the model, but our point here is to demonstrate
that there are circumstances in which regulation gives the generalist leverage to free-ride by lowering the
initial investment in safety.
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Figure 1: A depiction of a particular instance of our game-theoretic model. This instance of
the game consists of one general-purpose producer and three domain-specialists. Each player
has a different utility in performance-safety space which dictates the path of development.
The no-regulation game (upper left) reveals the players’ investment efforts when no floor is
imposed on safety. Regulating the domain-specialist alone (upper right) exhibits backfiring
for all three domains, meaning the regulated safety level is lower than it would be without
regulation. In this particular example, the same floor is assumed for all three domain-
specialists. Regulating the generalist alone (lower left) improves the safety level slightly
across all three domains, compared to no-regulation. Finally, a regime that targets both
generalist and specialists with regulation (lower right) is able to 1) retain the improved
safety performance from regulating the generalist, 2) improve the safety level of least-safe
domain-specialist, while 3) avoiding backfiring.
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Figure 2: Simulated results for an example of two-player AI regulation model with quadratic
costs. Players make costly investments in performance and safety (visualized on left), and
then receive some share of revenue that comes from the total investment levels. The players’
utilities – defined as their share of the revenue minus the cost of their investment – is
visualized for the Generalist (second from left) and the Domain-Specialist (third from left).
Colors represent different utility outcomes depending on different combinations of regulatory
constraints (θG, θD) which constrain the players’ safety investments. The game is solved over
a grid of plausible regulations: θG ∈ [0, 1.25], θD ∈ [θG, 2.5] using increments of 0.005, with
a total of 105,651 simulated regulation games. Regulations that lead the players to abstain

are depicted in black. There exists a region where non-zero regulation yields lower safety
than no regulation (highlighted on leftmost plot). There also exists a region where regulation
yields improvements to each players’ utility (highlighted on two center plots). The rightmost
plot summarizes our results by showing the backfiring and mutualism outcomes in the θG, θD
space. Parameter values for producing the plot: C0 = C1 = I2, rα = rβ = 1, and δ = 0.5.

specialist can backfire, our results suggest that other regulatory regimes fare better. When
safety standards are directed at both G and D with appropriate strength, regulation can
improve not just safety, but the utilities of both players, defined as their revenue share minus
their investment cost. This result might seem unintuitive: Regulation only reduces the set
of choices available to each actor in our model, so how can regulation lead to choices that
mutually benefit both generalist and specialist? What is stopping the players from choosing
utility-optimal strategies in the absence of regulation? The reason this phenomenon occurs
is a Prisoner’s Dilemma-style result: The players’ unregulated strategies, which are chosen
to maximize their individual utility, fail to yield the strategies that that are globally optimal
for both players. By constraining the actors away from the strategies that enable this kind
of selfish behavior, regulation can act as a commitment device. The generalist can increase
her investments in safety with the assurance that the domain specialist will contribute, too,
rather than free-ride off of G’s efforts.

Games can exhibit both backfiring and mutualistic regulations, depending on who is
targeted and at what threshold. For example, Figure 2 depicts a particular instance of
our game setting with one generalist and one domain-specialist. For the particular cost
and revenue functions depicted, backfiring regulations and Pareto-improving regulations are
possible, and the regulations yielding these effects are visualized. This figure represents a
systematic sweep of all pairs of thresholds directed at the generalist, the domain specialist,
or both. The pair of thresholds (0, 0) corresponds to the case of no regulation. The safety
implications of various regulations are depicted using a red-yellow-green color scale in the
leftmost plot, while the utility implications for the generalist and specialist are depicted
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using a purple-green-yellow color scale in the center plots. Compared to the safety and
utility values at the origin points, the backfiring and Pareto-improving regions are regulations
which lead to lower safety and higher utilities for both players, respectively. Although this
figure depicts an example of a single game, our analysis proves that these backfiring and
Pareto-improving regulations exist for a broad class of games with quadratic costs. Namely,
we find that backfiring occurs in all games in which the market incentivizes some non-
zero investment in both performance and safety without regulation. Our characterization
of when this phenomenon occurs includes separable scenarios (where the cost of investing
in performance is independent of the cost of investing in safety), complementary scenarios
(where investing in one makes the other cheaper), and weakly interfering scenarios (where
the cost of investing in one makes the other more expensive) up to a certain bound, which
we specify. We provide similar bounds for the mutualism results.

2 Related work

AI Safety Regulation. The rise of AI-related incidents have motivated several AI incident
repositories to keep track of common risks [1, 27]. Scholars have attempted to taxonomize
AI harms to make sense of the growing array of incidents [32, 37]. Some existing AI risk
taxonomies organize risks primarily by domains. These include risks to the physical or
psychological well-being of people, human rights and civil liberties, political and economic
structures, society and culture, and the environment [2]. Others categorize these risks based
on how they arise, including malicious use, malfunctions, or systemic effects from wide
adoption [5]. In our stylized model, we capture all such considerations using a single scalar
that can be toggled by players through investments in safety. Common themes in policy
drafts and recommendations stress the importance of balancing the goals of innovation and
risk reduction, appropriately defining and targeting thresholds, and the impacts on incentives
[12, 18].

Game-theoretic models of AI development. A line of work uses formal models
to reason about the strategic and social implications of machine learning (e.g., [7, 14, 21,
22, 25]). More recently, there have been proposals for using modeling approaches to under-
stand the social and safety implications of generative AI [13, 33]. Attempts to model the
development process of generative AI often make use of the observation that development is
sequential and involvesmultiple interacting actors [11]. Many existing works explore different
strategic aspects of the market for AI using a stackelberg game. For example, Taitler et al.
[35] use a sequential game to explore incentives for data-sharing. Further time-steps, players
and decisions have been added to explore particular topics, including the level of openness
and market entry dynamics [38, 39]. Taitler and Ben-Porat [34] introduce a particular notion
of regulation in a related game-theoretic setting, and similar to our paper, they conceive of
regulation as a restriction on the strategy space for developers of generative AI. Though
work explicitly examining the interaction between performance and safety attributes in this
setting is limited, Jagadeesan et al. [23] explores the interaction between these attributes in
a linear regression setting in order to understand firms’ market entry decisions.

The fine-tuning games model. Our work builds on and extends the fine-tuning games
model proposed in Laufer et al. [24]. That model builds a one-dimensional game in which
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players must bargain over a revenue-sharing contract before investing in performance in
sequence. We extend this model in two ways: First, the players’ strategy space is two-
dimensional in our model, to capture the dynamic that often arises where a regulator wants
to steer the technology in a direction (e.g., safety) other than that which is most-profitable
(e.g., a baseline combination of performance and safety, dictated by the unregulated market).
Second, we introduce the regulation, which can be seen as a floor constraining the feasible
strategy space of each player. This allows us to explore when targeting generalists, specialists,
both or neither is preferable for achieving desiderata like safety.

Economic theory and contracts. Our work leverages pre-existing approaches that
are common in the theoretical economics and game theory literatures to reason about the
set of possible impacts of AI safety regulation. In particular, we draw inspiration from
canonical works in contract theory [20, 31] and the coordination of supply chains [9]. Our
model is a variant of a Principal-Agent problem in which the strategy space is defined by
two real-valued attributes, and the cost and revenue are functions of these attributes. In this
way, our model draws inspiration from Viscusi and Moore [36] analyzing the possible effects
of products liability schemes on innovation and safety. That model — a one-player model
with no order-of-play effects — demonstrates that liability does not, necessarily, hamper
innovation. We assume that innovation is sequential, meaning that an entity’s investment
in safety or performance builds on the contributions of past investments [6, 19].3 In what
we call the ‘no-regulation’ game, we assume the players revenue-share via a linear contract
[15], a common assumption in the literature (e.g., [3, 10, 16, 17]). However, one way to
interpret our mutualism results (Sections 5.3 and 6.2) is as a demonstration that linear
contracts are sub-optimal in our setting. Our notion of regulation can be viewed as a set of
non-linear contracts defined by a set of strategy constraints, and our results suggest these
more expressive contracts can yield higher utility. Of course, still other forms of contracts
are possible and may yield different utility implications. We leave these directions to future
work.

3 A Model of Regulating AI Safety

Here we offer a formal model for analyzing the effects of regulation on the development of AI
applications. Our model is a sequence of sub-games between two players. Each player will
choose whether and how to contribute to the technology at a certain point in the development
of the technology, and some revenue is received depending on the ultimate attributes of the
technology. The players are constrained by regulatory floors on safety, which will be set
exogenously by a regulator.

Players. A general-purpose producer, referred to as G, invests in a technology that may
be adapted by domain-specialist(s), referred to as Di. The generalist is the first to invest in
the technology, meaning that before G moves, the technology’s attributes begin at value 0.
Each specialist Di makes an investment after the generalist has moved.

Technology. We say a technology is described by one or more non-negative attributes

3However, some have observed that safety investments can degrade as the result of fine-tuning performance
investments especially when model weights are open [29, 30]. This scenario, and especially the interaction
effects with model openness, are ripe areas for further analysis.
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γ ∈ Rd. In this paper, we are interested in two attributes in particular: performance and
safety.4 Unless otherwise specified, we assume d = 2 and that γ = [α, β] where α refers to
performance and β refers to safety.

Economic interests. Each player, acting in a way that maximizes their self-interest,
invests some non-zero amount in the technology. G invests to γ0 and eachDi further invests to
γi. Accordingly, each must pay a cost for their investment, ϕ0(γ0) and ϕi(γi; γ0), respectively.
After both players invest, they share a revenue that is brought in as a function of the ultimate
attributes of the technology in domain i, ri(γi). We assume that, for some δi ∈ [0, 1], G gets
δiri(γi) in revenue and Di gets (1− δi)ri(γi). δi could either be exogenously fixed and given
ahead of the game play, or it can be the result of bargaining between G and Di. When we
analyze a game with only one specialist, we will drop the subscript and use δ.

Regulation We model regulation as imposed exogenously on the environment. Regula-
tion is a minimum constraint on the safety investment that the players make. A regulation
that targets G’s investment is characterized by a value θG ∈ R+. A non-zero regulation would
constrain G′s strategy such that γ0[1] ≥ θG. A regulation targeted at the domain-specialist,
similarly, would take the form θD and lead the domain-specialist to be constrained in their
strategy so γi[1] ≥ θD.

Gameplay. The game proceeds as a sequence of subgames:

• Regulation {θG, θD} is announced.

• G chooses to either abstain or invest in the technology, bringing it to

γ0 =

[
α0

β0

]
.

• Di chooses to either abstain or invest in the technology, bringing it to

γi =

[
αi

βi

]
.

• The technology brings in revenue ri(γi), which will be shared such that G receives
δiri(γi) and D receives (1− δi)ri(γi).

The utilities of the players are given below:

UG :=
∑
i

δiri(γi)− ϕ0(γ0); UDi
:= (1− δi)ri(γi)− ϕi(γi; γ0)

The best-response sub-game perfect equilibrium strategy for the generalist and specialist,
respectively, can be expressed as the following optimization problems:

γ∗
0 := argmaxγ0UG s.t.β0 ≥ θG; γ∗

i := argmaxγiUDi
s.t.βi ≥ θG.

Finally, the players will opt to abstain, if they prefer 0 utility to any other feasible
strategy. If either player chooses to abstain, then both players receive 0 utility.

4We note, however, that the results and inferences we draw may hold for other attributes that relate to
one another with similar structure.
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4 Closed-Form Solutions

In this section, we analyze our regulation game where players’ cost functions can be expressed
as a two-degree quadratic equation. Specifying a quadratic function over two attributes
requires defining a matrix of cost coefficients. The cross-terms in this matrix represent how
investments the attributes interact with one another. For the technical portions of the paper,
we use the case of one domain specialist (D) as our focus. We therefore have the following
cost and revenue functions:

ϕ0(γ0) = γT
0 C0γ0,

ϕ1(γ1; γ0) = (γ1 − γ0)
TC1(γ1 − γ0),

r(γ1) = rTγ1,

where C0 =

[
c0,αα c0,αβ
c0,αβ c0,ββ

]
; C1 =

[
c1,αα c1,αβ
c1,αβ c1,ββ

]
; r =

[
rα
rβ

]
.

The players’ utilities can thus be expressed as:

UG := δrTγ1 − γT
0 C0γ0,

UD := (1− δ)rTγ1 − (γ1 − γ0)
TC1(γ1 − γ0).

It should be noted that not all values for the above parameters correspond to realistic or
interesting scenarios. For example, we assume that the diagonal entries of both cost matrices
c0,αα, c0,ββ, c1,αα, c1,ββ are non-negative, to capture that investments in goods like safety and
performance should have non-zero increasing cost. Although the cross-terms of the cost
matrices can be negative, we require that c0,αβ > −√

c0,ααc0,ββ and c1,αβ > −√
c1,ααc1,ββ,

since it should not be that some combination of investments in α, β come at negative cost.
Each players’ choices over α and β should be considered as simultaneous across the two
attributes, representing a joint optimization over performance and safety.

In this section, we start by providing sub-game perfect equilibria strategies in the case
with no regulation, and then provide solutions for the regulated game. The form of problem
we are dealing with is a continuous, not-necessarily-convex optimization problem with a
constant number of constant-degree polynomials in a constant number of variables. Broadly,
the strategy is to put forward a small number of candidate points that must be checked using
a limited number of steps. These checks can be implemented numerically. After stating the
solved subgame perfect equilibria strategies, we will move to a slate of numerical results and
findings analyzing the effects of regulation.

4.1 Subgame perfect equilibria strategies without regulation

In this section, we state the subgame perfect equilibrium strategies to the game under no
regulation. These can provide intuition about the behaviors in the game, before we add
the additional complexity of regulation. These can be seen as a strict generalization of the
Fine-Tuning Games solutions [24] to games with two attributes that can interact.
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Proposition 4.1. Given an AI regulation game with quadratic costs, no regulation, and
revenue-sharing parameter δ, domain specialist D’s subgame perfect equilibrium strategy is
one of the values in the following set:

γ∗
1 ∈

{
γ0 +

(1− δ)

2
C−1

1 r,

[
α0

β0 +
(1−δ)rβ
2c1ββ

]
,

[
α0 +

(1−δ)rα
2c1αα

β0

]
,

[
α0

β0

]}

The strategy is the feasible candidate which maximizes UD, subject to UD ≥ 0, α1 ≥ α0, β1 ≥
β0.

Proposition 4.2. Given a two-player AI regulation game with quadratic costs, no regulation,
and revenue-sharing parameter δ, G’s best-response is one of the following candidates:

γ∗
0 ∈

{
δ

2
C−1

0 r,

[
0
δrβ

2c0ββ

]
,

[
δrα

2c0αα

0

]
,

[
0
0

]}
.

The strategy is the candidate which maximizes UG, subject to UG ≥ 0, UD ≥ 0, α1 ≥ 0, β1 ≥ 0.

The proofs of the above two propositions are given in Appendix 8.1. The solutions offer
intuition about the set of strategies players might opt to take. They may venture in the
direction of some combination of performance and safety, that is, move to a point that does
not reside on either constraint. Or, alternatively, they may creep along the axes constraining
their strategy space, and invest minimally in either performance or safety.

When do the players prefer one of these strategies over another? In general, our solutions
are provided as sets of candidates because there are multiple intersecting constraints that
must be checked to ensure a given candidate is optimal. However, our analysis reveals classes
of games in which the market will lead players to invest in both safety and performance in
conjunction under no regulation. We make this claim formal below.

Remark 4.3. Given the AI regulation game with quadratic costs, no regulation, and revenue-
sharing parameter δ ∈ (0, 1). If any player p’s cost interaction term satisfies the following
inequalities:

cp,αβ < min

(
√
cp,ααcp,ββ,

cp,ααrβ
rα

,
cp,ββrα
rβ

)
,

then their best-response strategy includes non-zero investment in both performance and safety.

This claim is proven in Appendix 8.2. The broad intuition is that the first of these
inequalities establishes the costs are strictly convex, and the second two ensure that the
player’s cost interactions are not so positive that investing in both performance and safety
is prohibitively expensive compared to investing in one or the other alone. The claim offers
some intuition for when a player prefers to invest in both attributes together, even without
regulation pushing them to invest in safety. It covers all games in which the cost interactions
are negative, which we call the complementary scenario, meaning it is cheaper to invest in
both performance and safety together than to invest in each individually. It further covers
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all games in which the cost interactions are zero, which we call the separable scenario,
meaning there is no benefit or loss to investing in both attributes in conjunction. Finally, it
covers certain instances where the cost interactions are positive, which we call the interfering
scenario, meaning safety investments make performance more costly, and vice versa.

4.2 Subgame perfect equilibria strategies with regulation

Here we provide the subgame perfect equilibria strategies of the two players in our two-
attribute game, in the presence of regulation. Notice that the no-regulation gameplay can
be derived from these solutions simply by plugging in θD = θG = 0. Like the solutions in
the prior section, these generalized solutions require checking a number of candidates, but
this number has grown to account for the possible responses to regulation.

Proposition 4.4. Given a two-attribute fine-tuning game with quadratic costs, regulatory
constraints θG, θD, and bargaining parameter δ, the domain specialist D’s subgame perfect
equilibrium strategy is one of the values in the following set:

γ∗
1 ∈


γ0 +

(1−δ)
2

C−1
1 r,

[
α0

β0 +
(1−δ)rβ
2c1ββ

]
,

[
α0 +

(1−δ)rα
2c1αα

− c1αβ

c1αα
max(0, θD − β0)

max(β0, θD)

]
,[

α0

max(β0, θD)

]
, abstain.


The strategy is the feasible candidate which maximizes UD, subject to UD ≥ 0, α1 ≥ α0, β1 ≥
max(β0, θD).

Proposition 4.5. Given a two-attribute, two-player fine-tuning game with quadratic costs,
regulatory constraints θG, θD, and bargaining parameter δ, G’s best-response is one of the
following candidates:

• δ
2
C−1

0 r,

•

[
0
δrβ

2c0ββ

]
,

•
[

δrα
2c0αα

− c0αβ

c0αα
θG

θG

]
,

•
[

0
θG

]
,

• abstain,

• Three additional candidates along the UD = 0 constraint, which is given by the following
quadratic equation:

(1− δ)rαα0 +

(
(1− δ)2r2α

4c1αα
+ (1− rβθD − c1αβ

c1αα
(1− δ)θD +

c21αβ
c1ααθ2D

− c1ββθ
2
D

)
+(

c1αβ
c1αα

(1− δ)rα − 2
c21αβ
c1αα

θD + 2c1ββθD

)
β0 +

(
c21αβ
c1αα

− c1ββ

)
β2
0 = 0.

11



The strategy is the candidate which maximizes UG, subject to UG ≥ 0, UD ≥ 0, α1 ≥ 0, β1 ≥
θG.

The proof of the above propositions is provided in Appendix 8.3. We outline the intu-
ition behind the proof as follows: Notice that the optimization is an inequality-constrained
quadratic optimization problem. The problem has been set up so no solutions exist at infin-
ity, that is, the solutions will either be local maxima or will reside on constraints. Therefore,
we can find the critical points for the unconstrained problem, as well as the critical points
for every possible combination of every constraint in our problem. This yields a set of
candidates, which are worked out and listed in the set above.

There is a bit of additional subtlety in the process for arriving at the last three candi-
dates along the constraint listed at the end of the Proposition. Two of the three candidates
reside at the intersection of this constraint with the other constraints—that is, they satisfy
the constraint listed and either α0 = 0 or β0 = θG. Finding the point that satisfies these
combinations of constraints is only as hard as solving the roots of a one-variable quadratic, at
worst. The third one, however, is a bit more convoluted. This candidate can be described as
the solution to the optimization problem maxγ0 UG s.t.UD = 0, where the other constraints
are ignored. Although this is a (not necessarily convex) quadratic program, specifying the
Lagrangian suggests that its solution must be the solution of a system of three distinct equa-
tions with three unknown variables (α0, β0, λ) ∈ R3. Two of these equations are quadratic,
and the other is linear:

• δrα − 2c0ααα0 − 2c0αββ0 − λ(1− δ)rα = 0,

• δc1αβrα
c1αα

− 2c0βββ0 − 2c0αβα0 − λ
(

c1αβ

c1αα
(1− δ)rα − 2

c21αβθD

c1αα
+ 2

(
c1αβ

c1αα
− c1ββ

)
β0

)
= 0,

• The quadratic stated in the proposition.

Though there may be multiple roots satisfying the above equations, the roots are bounded
in typical fashion by Bezout’s Theorem. Further algebra for arriving at solutions is left to
the computer.

5 Computational results

Here we describe a set of numerical tests and demonstrations to explore the strategies in our
game, using the solved strategies from the previous section. Our analysis here is focused on
the existence of a persistent facet of the model concerning the way the players shift their
strategies in response to regulation. With the knowledge that one player or the other is
required to meet a regulatory floor, agents can choose their strategies accordingly. In a
variety of cases, we observe that the strategies shift in a way that lowers the ultimate safety
investment compared to safety attained under no regulation. This effect – which we term
backfiring – is observable in cases where the regulation is weak, meaning it imposes a floor
that the players already meet under no regulation.

This section starts by demonstrating the existence of this effect. We then discuss its
persistence in cases where players can flexibly choose how they share revenue via a linear
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Figure 3: Backfiring observed in a basic two-player game where θG = 0 and θD is varied over
the range [0, 2.5]. As θD is swept upward from 0, there is some value at which the generalist’s
score exhibits a discontinuity and the investment in safety lowers. In this example, the
discontinuity occurs at a threshold value below the safety attained under no regulation
(0.5). In response to this discontinuity in the generalist’s strategy, the domain-specialist
minimally complies with the regulation, meaning the ultimate safety is reduced for some
non-zero regulations. This plot conveys information redundant with the first panel of Figure
2, where the regulation is swept only along the vertical line in which the generalist’s threshold
is 0.

contract. Finally, in stark contrast to the observation that regulation can backfire, we find
that regulation can act as a commitment device, unlocking strategy sequences that mutually
benefit the players.

5.1 Regulation can backfire.

Consider a basic game given by the following set of cost and revenue parameters: C1 = C0 =
I2, rα = rβ = 1, δ = 0.5. This game is separable, meaning there are no interaction effects
between performance and safety, and it assumes the market without regulation places equal
value on performance and safety. Figure 3 depicts the players’ strategies in this game, for
varying levels of regulation targeting the Domain-specialist alone. For the lowest regulatory
thresholds, we observe that the players stick to their no-regulation safety investments, since
they already clear the threshold and their no-regulation investments remain optimal. As
the regulatory floor is increased, however, the generalist’s strategy exhibits a discontinuity.
Crucially, this drop in G’s safety investment occurs at a regulatory threshold lower than the
no-regulation safety strategy.

Why does G switch strategies? Here we attempt to provide some intuition. Abent
regulation, there exists some typical best-response that D will take, and G must anticipate
this best-response to choose an optimal strategy. Even if G would theoretically prefer D to
invest more in safety, G cannot fully controlD’s actions. Regulation that targetsD, however,
does just this: it restricts D’s strategy space so D must commit to certain safety investments,
regardless of G’s strategy. Therefore, in the presence of regulation, G is incentivized to select
a new strategy sequence with lower investments in safety, because G knows that D will cover
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Figure 4: Results from numerical tests over the set of possible (θG, θD) pairs in the two-
attribute, two-player, separable quadratic-cost game. Backfiring occurs in the weak regula-
tory regimes in which θD is just below βA

0 . Regulations that mutually improve both players’
utilities over anarchy are detected for all three bargaining solutions. The highest aggregate
utility in this game is achieved at θG = 0.5, θD = 1.

the gap in safety between G’s investment and D’s threshold. Put another way, G is given
the opportunity to engage in a kind of free riding behavior. G creates a gap in the safety
investment as a cost-cutting exercise, knowing D must bridge the gap to reap any reward in
the game.

Our results here convey that backfiring occurs in one instance of the game. We have yet
to give a clear characterization of how widespread this phenomenon is. The example we have
shown so far assumes the revenue-sharing parameter is fixed at δ = 0.5. One might imagine
that, instead of a fixed revenue sharing arrangement, players can collectively decide how to
share the revenue. Does the ability to influence the revenue-sharing parameter prevent cases
where weak regulation backfires? We turn to this question next.

5.2 Bargaining does not suffice to prevent backfiring.

Here we provide evidence that the existence of backfiring persists in more games beyond
the example portrayed in Figures 2. In particular, we relax the assumption that players
share their revenue according to a constant revenue-sharing parameter δ = 0.5. Instead, we
allow players to reach bargaining agreements to distribute revenue — and, correspondingly,
profit — in a way that maximizes their joint utility. Bargaining solutions are arrangements
that maximize the players’ joint utility.5 We provide evidence that even when players can
distribute revenue in a way that maximizes the joint utility, these arrangements can still
exhibit backfiring effects. We assume here that the players jointly agree on a bargaining
solution before either invests effort, but after learning about the regulation.6 Figure 4 shows
the numerical results for a variant of the separable game where we vary the value of δ over 98
values in the range [0.01, 0.99]. We vary the regulatory setting for 13 θG values in [0, 1.2] and

5The relevance of bargaining solutions to our setting is described in further depth by Laufer et al. [24].
6The next sections will relax this assumption further, providing findings on the existence of backfiring

and mutualism for every non-trivial linear revenue-sharing agreement δ ∈ (0, 1).
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Figure 5: The set of attainable utility outcomes over a grid of possible regulation regimes
and bargains for the two-attribute, two-player, separable quadratic-cost game. If we imagine
that regulations are endogenous to the game – that is, regulations are decided collectively
by the players, like δ, then each of the blue points represents a possible game with utility
implications for the two players. If the players are restricted to a particular regulatory regime
– targeting G only, D only, or neither – then the utility they are able to achieve (depicted in
dashed lines) suffers, compared to the regime where both players are subjected to regulation.
The shape formed by the light blue dots represents the full set of simulated games, suggesting
that regulation targeting both players is at times needed to achieve outcomes that cannot
be achieved by regulating just one.

51 θD values in [0, 2.5], for a total of 49,686 simulated games. The figure depicts three different
processes for arriving at an optimal bargain: utilitarian, which selects δ to maximize the sum
of utilities, Nash, which selects δ to maximize the product of utilities [28], and egalitarian,
which sets δ to maximize the minimum of the utilities. In all scenarios, we observe at least
one instance of a combination of regulations that backfire. Further, we observe a cluster of
regulation regimes that yield mutual improvement to utility. The results suggest that even
in instances where players can choose how to distribute revenue through revenue-sharing,
these agreements are sub-optimal for engendering the right sort of commitment from each
of the players, if their goal is to mutually benefit from their interaction. In the next section,
we explore the idea that regulation can bring about a mutualistic benefit, beyond what is
achievable through bargaining.

5.3 Regulation can act as a commitment device.

Here we show that there exist cases where regulation can leave both players better off than
anarchy, while also benefiting the safety of the technology. Even though the regulation
constrains the space of investments that players are able to achieve, it can nonetheless leave
each player with higher utility than they are able to achieve under no regulation. To make
this finding more clear, we depict the set of all achievable (UG, UD) combinations in Figure
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5. The light blue cloud of points represents all attainable utility scenarios, over a grid of
θD, θG, and δ values. The dotted lines represent the convex hull (northeastern faces) of
attainable utility implications for the following regimes: 1) neither player is targeted with
regulation (depicted in green), 2) one player is targeted with regulation (depicted in red
and black), and 3) both players are targeted with regulation (inferrable from the outermost
feasible points). The figure suggests that a non-vacuous constraint on both players achieves
more preferable utility outcomes than regulations of individual players or bargaining alone
are able to achieve.

These results suggest that, although regulation can backfire, it can also mutually serve
the interests of both players while also improving the level of safety of the technology. This
finding raises the following question: if it was possible to achieve higher utilities all around,
why was this set of strategies not chosen by the players in the unregulated game? The
players did not opt for this set of strategies because these strategies are dominated for
at least one player in at least one subgame. As a hypothetical, imagine that under no
regulation, the players sit down for a conversation before the game, and both say they will
contribute ϵ additional investment in safety. When the game reaches the last step, however,
D finds he benefits more from investing only (1−δ)

2
C−1

1 , rather than the agreed upon value of
(1−δ)

2
C−1

1 +2ϵ. What’s more, G knows that D will do this, and so G’s decision will break the
agreement before D even gets the chance to respond. Without the regulation restricting D’s
behavior away from changing strategies in the final hour, nothing prevents D from pursuing
the highest-utility strategy, even if it harms G. Thus, our model has a prisoner’s dilemma
dynamic baked into it: there are feasible strategies that leave both players better off, but
these strategies are not equilibria.

Absent regulation, the players might wish they could ensure the other will uphold their
side of a verbal agreement, though they are unable to guarantee it. Regulation, therefore,
can act as a commitment device, which lends teeth to agreements that the players are able
to enter prior to making their investments. This commitment device can be valuable in a
formal sense: Both players would be willing to pay for it, as long as the price is less than
the amount of utility they collectively gain under regulation.

6 A General Characterization

In the previous sections, we arrived at closed-form solutions for the players’ strategies and
have demonstrated individual instances that exhibit the backfiring effect of regulation. We
have not yet determined how widespread this phenomenon is. In this section, we provide
analytical results that characterize when this phenomenon occurs. Our findings suggest
that this effect is notably widespread. We find that for all quadratic-cost games, backfiring
occurs as long as both of the technology’s attributes (performance and safety) are sufficiently
complementary such that, under no regulation, the players will invest in some combination of
them. Intuitively, if the players invested only in performance under no regulation, backfiring
would be impossible as the baseline safety investment would be zero. Therefore, our condition
for backfiring covers all games where the market prefers some non-zero baseline investment
in performance and safety. The condition we rely on is precisely the condition introduced in
Remark 4.3, which represents an upper bound on the cost interaction terms. This section
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will prove that both backfiring and mutualism occur in a range of scenarios that depend
crucially on the cost interaction term, and will describe what this dependence looks like.

6.1 Backfiring occurs in all mixed-strategy games.

Below we prove that for all AI regulation games in which the players invest a non-zero amount
in safety and performance under no regulation, there is a non-empty set of regulatory regimes
that exhibit a backfiring effect.

Theorem 6.1. Given an AI regulation game with quadratic costs. If both players’ cost
interactions meet the following conditions:

cp,αβ < min

(
√
cp,ααcp,ββ,

cp,ααrβ
rα

,
cp,ββrα
rβ

)
,

then there exists an ϵ > 0 such that the regulatory regime θG = 0, θD = βA
0 − ϵ backfires.

The proof of the above theorem is provided in Appendix 10. Here we provide an overview
of the conceptual argument. We start by observing that the unregulated optimal strategies
γA
0 , γ

A
1 remain feasible in weak regulatory settings. These strategies dominate all alternative

strategies in which the players contribute to safety beyond their regulatory constraints, as any
such strategy was available in the no regulation scenario, so they were already shown to be
sub-optimal compared to γA

0 , γ
A
1 . The proof’s task, therefore, is is to find some θD < βA

1 and
some γ′

0 ̸= γA
0 , such that D minimally complies with the regulation (β′

0 = θD), and further,
UG(γ

′
0; θD) > UG(γ

A
0 ; θD). For the proof to work, we choose a regulation of θG = 0, θD =

βA
0 − ϵ for some small positive ϵ > 0, and generalist strategy γ′

0 =

[ δrα
2c0,αα

(
βA
0 − 2ϵ

)
βA
0 − 2ϵ

]
. For

sufficiently small ϵ, we find that the change to the utility of G for using this strategy is
positive as long as the following condition is met: rβ >

c1,αβ

c1,αα
rα. This inequality, given by the

analysis in Appendix 10, is precisely the condition established in Remark 4.3 for non-zero
investment in safety under no regulation.

The above results demonstrate that backfiring does not only exist in single degenerate
cases: It occurs in a range of scenarios in which players share revenue and each contribute
non-zero effort to the development of the technology. These scenarios include settings in
which the two attributes are complementary, as well as a range of settings where the two
attributes are interfering, up to a particular limit that we are able to specify. We note that
further generalizations are open for broader functional forms, including more expressive poly-
nomial costs and exponential costs. The generality of the backfiring effect in the quadratic
case gives us reason to believe that the effect might hold for a broader set of forms, though
we leave these directions to future work.

6.2 Mutualism occurs in sufficiently separable games.

So far, we have shown that a set of regulations backfire in a swath of two-attribute games.
Here we provide a second result on a set of regulations that fare better. Using similar logic
about games with bounded interaction effects between the the two attributes, we find that
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there exist combinations of regulatory thresholds that mutually improve the two players’
utilities, as well as the safety level of the technology. We state this result below.

Theorem 6.2. Given a two-player AI regulation game with quadratic costs. If both players
meet the following conditions:

|cp,αβ| < min

(
√
cp,ααcp,ββ,

cp,ααrβ
rα

,
cp,ββrα
rβ

)
,

then there exists an ϵ > 0 such that the regulatory regime θG = βA
0 +ϵ, θD = βA

1 +2ϵ mutually
improves both players’ utilities.

The proof of the above theorem is given in Appendix 11. The proof follows a similar
strategy to the backfiring proof. We are focused on the set of games where the players arrive
at unconstrained solutions in the case of no regulation, and we perturb the regulation by a
small positive ϵ value and see the implications for the players’ utilities. Here, instead of tar-
geting only the domain-specialist and specifying a threshold slightly below the unconstrained
optimal strategy, we set the regulation to target both players using a threshold slightly above
their unconstrained strategies. Instead of measuring the impact on safety, we measure the
impact on the players’ utilities and find that, under the specified condition, the utilities both
improve.

The results suggest that, similar to the characterization of backfiring, the mutualism
effect is observable in a range of quadratic-cost games, including in separable scenarios and
a range of complementary and interfering scenarios. Notice, however, that our condition for
establishing when mutualism occurs is slightly different than the condition in the backfiring
theorem. Instead of a one-sided bound on the players’ cost interaction terms, our proof
relies on a two-sided bound. The analysis suggests there may be certain games where the two
attributes are strongly complementary where slightly increasing the regulation in the manner
proposed does not increase players’ utilities. In other words, if the market already sufficiently
incentivizes joint investments in safety and performance, then forcing safety requirements on
both players in equal proportion may not benefit players’ utilities. In these cases, a linear
contract may suffice to serve the utilities of the players, and so regulation would only be
needed for achieving the goal of advancing safety, and would not serve the additional role in
enforcing commitments from players.

7 Conclusion

Proposals for AI regulation have made use of the idea that different entities contribute
to these technologies in succession. This work provides a model for reasoning about the
effects of targeting AI safety regulation along the development chain. Our findings suggest
that weak safety regulation predominantly targeted at the domain specialist can backfire,
yielding lower investments in safety than in the alternative case of no regulation. Our
findings further suggest that regulation appropriately targeted at both upstream producers
and downstream specialists can exhibit a mutualism effect in which both entities benefit.
After demonstrating instances of the backfiring and mutualism effects through a numerical
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simulation, we provide analysis showing these phenomena are not just degenerate cases but
hold in a range of scenarios.

Our results reveal natural directions for future research. In the setting we have put
forward, it would be interesting to move beyond showing the existence of backfiring and
mutualism regions and characterize the shape of these regions and the magnitude of their
effects. Certain segments of the boundaries of these regions are straightforward but others
seem to require solving higher-order polynomials to express in closed-form.

Generalizations beyond the quadratic-cost games might be interesting. For instance, it
may be possible to show that backfiring and Pareto-improvement effects occur for any convex
cost and concave revenue games meeting where there exist some marginal conditions on the
functions’ marginal conditions including their slopes and intercepts.

We have predominantly focused on the case where there is one domain-specialist, but
in many real-world settings the development of AI technologies involve multiple domains,
and each domain may involve many entities who compete. To what extent does competition
between multiple entities change the backfiring and Pareto-improving impacts of regulation?
Pursuing questions about multiple domain-specialists would require further specifying the
structure of G’s contract with each specialist, which might reasonably be conceived as a
constant revenue share across domains, a constant fixed price across domains, or a vari-
able price across domains. Relatedly, approaches to regulating different specialists may be
conceived of as domain-specific (different requirements for each domain) or domain-agnostic
(requirements for all domains). Pursuing questions about multiple generalists may also il-
luminate interesting directions. In particular, if different domains have different preferences
over attributes, there may be scenarios where general providers specialize their investments
to capture some domains and cede others to their competitors. Such dynamics raise new
questions about how to design regulation to account for these rich constellations of interact-
ing actors.
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8 Game Solving

8.1 Player’s strategies without regulation

The domain-specialist’s strategy. The proof for Proposition 4.1 is given below.

Proof. D’s best-response strategy is the value γ∗
1 that maximizes D’s utility.

γ∗
1(γ0, δ) = argmax

γ1
UD(γ0, γ1δ) s.t. UD ≥ 0, α1 ≥ α0, β1 ≥ β0

Observe that D will not abstain because zero-investment (γ1 = γ0) is cost-free, yielding
non-negative utility, so we can safely ignore the constraint. To solve the optimization, we
specify the Lagrangian as follows for some multipliers λ1 ∈ R, λ2 ∈ R and a slack variables
s1 ∈ R, s2 ∈ R. By construction, we assert that the slack variables are only non-zero when
the multipliers are zero, and the multipliers are non-zero only if the slack variables are zero.

L := (1− δ)rTγ1 − (γ1 − γ0)
TC1(γ1 − γ0)− λ1(α1 − α0 − s21)− λ2(α1 − α0 − s22).

We partially differentiate with respect to each decision variable and each multiplier.

∂

∂α1

L = 0

⇐⇒ (1− δ)rα − 2c1,αα(α1 − α0) + 2c1,αβ(β1 − β0)− λ1 = 0

∂

∂β1

L = 0

⇐⇒ (1− δ)rβ − 2c1,ββ(β1 − β0) + 2c1,αβ(α1 − α0)− λ2 = 0

∂

∂λ1

L = 0

⇐⇒ −α1 + α0 + s21 = 0

∂

∂λ2

L = 0

⇐⇒ −β1 + β0 + s22 = 0
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Using complementary slackness, we have four possible options:

1. s1 = 0, λ1 > 0, s2 = 0, λ2 > 0 → β∗
1 = β0, α

∗
1 = α0.

2. s1 ̸= 0, λ1 = 0, s2 = 0, λ2 > 0 → β∗
1 = β0, and we can plug into our first of four

equations above:

(1− δ)rα − 2c1,αα(α1 − α0) + 2c1,αβ(β1 − β0)− λ1 = 0

→ (1− δ)rα − 2c1,αα(α1 − α0) = 0

→ α∗
1 = α0 +

(1− δ)rα
2c1,αα

.

3. s1 = 0, λ1 > 0, s2 ̸= 0, λ2 = 0 → α∗
1 = α0, and we can plug in to equation 2:

(1− δ)rβ − 2c1,ββ(β1 − β0) + 2c1,αβ(α1 − α0)− λ2 = 0

→ (1− δ)rβ − 2c1,ββ(β1 − β0)− λ2 = 0

→ β∗
1 = β0 +

(1− δ)rβ
2c1,ββ

.

4. s1 ̸= 0, λ1 = 0, s2 ̸= 0, λ2 = 0 → This is the unconstrained critical point, and is solved
via the first two systems of equations:

∇UD = (1− δ)r − 2C1(γ1 − γ0) = 0

→ γ∗
1 = γ0 +

(1− δ)

2
C−1

1 r.

Thus we have established our four candidates in the proposition statement.

The Generalist’s strategy. The proof for Proposition 4.2 is given below.

Proof. G’s best-response strategy is the value γ∗
0 that maximizes G’s utility.

γ∗
0(δ) = argmax

γ1
UG(γ0, δ) s.t. UG ≥ 0, α0 ≥ 0, β0 ≥ 0.

Following the same steps as the proof of Proposition 4.1, we specify the Lagrangian as follows
for multipliers λ1 ∈ R, λ2 ∈ R and a slack variables s1 ∈ R, s2 ∈ R.

L := δrTγ1 − γT
0 C0γ0 − λ1(α0 − s21)− λ2(α0 − s22).
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We partially differentiate with respect to each decision variable and each multiplier.

∂

∂α0

L = 0

⇐⇒ δrα − 2c0,ααα0 + 2c0,αββ0 − λ1 = 0,

∂

∂β1

L = 0

⇐⇒ δrβ − 2c0,βββ0 + 2c1,αβα0 − λ2 = 0,

∂

∂λ1

L = 0

⇐⇒ −α0 + s21 = 0,

∂

∂λ2

L = 0

⇐⇒ −β0 + s22 = 0.

Using complementary slackness, we have four possible options:

1. s1 = 0, λ1 > 0, s2 = 0, λ2 > 0 → β∗
0 = 0, α∗

0 = 0.

2. s1 ̸= 0, λ1 = 0, s2 = 0, λ2 > 0 → β∗
0 = 0, and we can plug into our first of four equations

above:

δrα − 2c0,ααα0 + 2c0,αββ0 − λ1 = 0

→ δrα − 2c0,ααα0 = 0

→ α∗
0 =

δrα
2c0,αα

.

3. s1 = 0, λ1 > 0, s2 ̸= 0, λ2 = 0 → α∗
0 = 0, and we can plug in to equation 2:

δrβ − 2c0,βββ0 + 2c0,αβα0 − λ2 = 0

δrβ − 2c0,βββ0 = 0

→ β∗
0 =

δrβ
2c0,ββ

.

4. s1 ̸= 0, λ1 = 0, s2 ̸= 0, λ2 = 0 → This is the unconstrained critical point, and is solved
via the first two systems of equations:

∇UG = δr − 2C0γ0 = 0

→ γ∗
0 =

δ

2
C−1

0 r.

Thus we have established our four candidates.
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8.2 Condition for non-zero performance and safety investment

Condition establishing non-zero investment. Below we prove Remark 4.3.

Proof. The first of the three inequalities establishes that the player’s costs are strictly convex:

cαβ <
√
cp,ααcp,ββ ⇐⇒ cp,ααcp,ββ − c2αβ > 0 ⇐⇒ detCp > 0.

By the spectral theorem, we know a 2x2 matrix is positive definite if and only if its deter-
minant and trace are both positive, which is now established. By Lemma 9.1, the utility is
strictly concave for our setting if and only if the cost is strictly convex. Thus the uncon-
strained solution is the global optimum as long as it is feasible. Thus, the necessary and
sufficient condition for optimality is the condition for feasibility.

• For the generalist:

δ

2
C−1

0 r > 0 ⇐⇒ δ

2 detC0

[
c0,ββrα − c0,αβrβ
−c0,αβrα + c0,ααrβ

]
>

[
0
0

]
Using the same positive definiteness identity above, we know the determinant is posi-
tive. We are given δ > 0. Thus we can cancel the positive constant term δ

2 detC0
. The

two inequalities simplify to those stated in the proposition.

• For the specialist, the proof proceeds identically. Observe that (1 − δ) ≥ 0 and the
unconstrained contribution is given by: 1−δ

2
C−1

1 r.

8.3 Proof for Player Strategies with Regulation

Here we provide proofs for our propositions establishing best-response strategies for the
players.

Domain-specialist best-response under regulation. Here we provide the proof of
Proposition 4.4, the domain specialist’s best response under regulatory requirement θD.

Proof. D’s best-response strategy is the value γ∗
1 that maximizes D’s utility. D will abstain

if and only if the best option yields negative utility.

γ∗
1(γ0, δ, θD) = argmax

γ1
UD(γ0, δ, θD) s.t. UD ≥ 0, α1 ≥ α0, β1 ≥ max (β0, θD) .

Define κ = max(β0, θD). To solve the optimization, we specify the Lagrangian as follows for
some multipliers λ ∈ R3 and a slack variables s ∈ R3.

L := (1− δ)rTγ1 − (γ1 − γ0)
TC1(γ1 − γ0)− λ1(α1 −α0 − s21)− λ2(β1 − κ− s22)− λ3(UD − s23).
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We partially differentiate with respect to each decision variable and each multiplier.

∂

∂α1

L = 0

⇐⇒ (1− δ)rα − 2c1,αα(α1 − α0) + 2c1,αβ(β1 − κ)− λ1 − λ3
∂UD

∂α1

= 0

⇐⇒ (1− λ3) ((1− δ)rα − 2c1,αα(α1 − α0) + 2c1,αβ(β1 − κ))− λ1 = 0

∂

∂β1

L = 0

⇐⇒ (1− δ)rβ − 2c1,ββ(β1 − κ) + 2c1,αβ(α1 − α0)− λ2 − λ3
∂UD

∂β1

= 0

⇐⇒ (1− λ3) ((1− δ)rβ − 2c1,ββ(β1 − κ) + 2c1,αβ(α1 − α0))− λ2 = 0

∂

∂λ1

L = 0

⇐⇒ −α1 + α0 + s21 = 0

∂

∂λ2

L = 0

⇐⇒ −β1 + κ+ s22 = 0

∂

∂λ3

L = 0

⇐⇒ −UD + s22 = 0

⇐⇒ −(1− δ)rTγ1 + (γ1 − γ0)
T C1 (γ1 − γ0) + s22 = 0

Using complementary slackness, we have eight possible options:

1. s1 = 0, λ1 > 0, s2 = 0, λ2 > 0, s3 ̸= 0, λ3 = 0 → β∗
1 = κ, α∗

1 = α0.

2. s1 = 0, λ1 > 0, s2 = 0, λ2 > 0, s3 = 0, λ3 > 0 → β∗
1 = κ, α∗

1 = α0. This offers the same
candidate as (1).

3. s1 = 0, λ1 > 0, s2 ̸= 0, λ2 = 0, s3 ̸= 0, λ3 = 0 → α∗
1 = α0, solve equations (1) and (2)

for β∗
1 and λ1. Omitting the algebra, this yields:

γ∗
1 =

[
α0

β0 +
(1−δ)rβ
2c1ββ

]

4. s1 = 0, λ1 > 0, s2 ̸= 0, λ2 = 0, s3 = 0, λ3 > 0 → α∗
1 = α0, solve equations (1) and (2)

for β∗
1 and λ1. This solution, if it is distinct from the previous solution (3), will always

be dominated because it is characterized by 0 utility for G.

5. s1 ̸= 0, λ1 = 0, s2 = 0, λ2 > 0, s3 = 0, λ3 > 0 → β∗
1 = κ → solve equations (1) and (2)

for λ1 and α∗
1. Omitting algebra, this yields:

γ∗
1 =

[
α0 +

(1−δ)rα
2c1αα

− c1αβ

c1αα
max(0, θD − β0)

max(β0, θD)

]
27



6. s1 ̸= 0, λ1 = 0, s2 = 0, λ2 > 0, s3 ̸= 0, λ3 = 0 → this solution, if it is distinct from the
previous one (5), will always be dominated because it is characterized by 0 utility for
G.

7. s1 ̸= 0, λ1 = 0, s2 ̸= 0, λ2 = 0, s3 ̸= 0, λ3 = 0 → α∗
1 = α0, solve equations (1)

and (2) for α∗
1, β

∗
1 . This is the unconstrained solution. Omitting algebra, this yields:

γ∗
1 = γ0 +

(1−δ)
2

C−1
1 r.

8. s1 ̸= 0, λ1 = 0, s2 ̸= 0, λ2 = 0, s3 = 0, λ3 > 0 → β∗
1 = κ → solve equations (1) and

(2) for α∗
1, β

∗
1 . This solution, if it is distinct from (7), will always be dominated by (7)

because it is characterized by 0 utility for G.

Thus we have established our four candidates in the proposition statement. To handle the
abstain scenario, we check each candidate produced in the process above by plugging the
strategy to our formula for UD. If none yield positive utility, then the domain specialist
prefers to abstain.

The generalist’s subgame perfect equilibrium strategy under regulation. Here
we prove Proposition 4.5.

Proof. G’s best-response strategy is the value γ∗
0 that maximizes G’s utility.

γ∗
0(δ, θG, θD) = argmax

γ0
UG(γ0; δ, θG, θD) s.t. UG ≥ 0, UD ≥ 0, α0 ≥ 0, β0 ≥ θG.

To solve the optimization, we specify the Lagrangian as follows for some multipliers λ ∈ R4

and a slack variables s ∈ R4.

L := δrTγ1 − γT
0 C0γ0 − λ1(α0 − s21)− λ2(β1 − θG − s22)− λ3(UD − s23)− λ4(UG − s24).
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We partially differentiate with respect to each decision variable and each multiplier.

∂

∂α1

L = 0

⇐⇒ δrα − 2c0,ααα0 + 2c0,αββ0 − λ1 − λ3
∂UG

∂α0

− λ4
∂UD

∂α0

= 0

⇐⇒ (1− λ3) (δrα − 2c0,ααα0 + 2c0,αββ0)− λ1

−λ4 ((1− δ)rα − 2c1,αα(α1 − α0) + 2c1,αβ(β1 −max(β0, θD))) = 0,

∂

∂β1

L = 0

⇐⇒ δrβ − 2c0,βββ0 + 2c0,αβα0 − λ2 − λ3
∂UG

∂β0

− λ4
∂UD

∂β0

= 0

⇐⇒ (1− λ3) (δrβ − 2c0,βββ0 + 2c0,αβα0)− λ2

−λ4 ((1− δ)rβ − 2c1,ββ(β1 −max(β0, θD) + 2c1,αβ(α1 − α0)) = 0,

∂

∂λ1

L = 0

⇐⇒ −α0 + s21 = 0,

∂

∂λ2

L = 0

⇐⇒ −β0 + s22 = 0,

∂

∂λ3

L = 0

⇐⇒ −UG + s22 = 0

⇐⇒ −δrTγ1 + γT
0 C1γ0 + s22 = 0,

∂

∂λ3

L = 0

⇐⇒ −UD + s22 = 0

⇐⇒ −(1− δ)rTγ1 + (γ1 − γ0)
T C1 (γ1 − γ0) + s22 = 0.

Using complementary slackness, we have sixteen possible options. For brevity, we refer
to these options by the constraints they satisfy, where bold corresponds to the constraints
being activated. The algebra is omitted for exposition; only the candidates yielded are noted
for each constraint setting.

1. α0, β0, UG, UD → [0, θG].

2. α0, β0, UG, UD → [0, θG]

3. α0, β0, UG, UD → [0, θG]

4. α0, β0, UG,UD → [0, θG]

5. α0, β0,UG, UD →

[
0
δrβ

2c0ββ

]
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6. α0, β0,UG, UD →

[
0
δrβ

2c0ββ

]

7. α0, β0, UG, UD →

[
0
δrβ

2c0ββ

]
8. α0, β0, UG,UD → One of three along UD = 0 curve.

9. α0,β0, UG, UD → γ∗
0 =

[
δrα

2c0αα
− c0αβ

c0αα
θG

θG

]
.

10. α0,β0, UG, UD →
[

δrα
2c0αα

− c0αβ

c0αα
θG

θG

]

11. α0,β0, UG, UD →
[

δrα
2c0αα

− c0αβ

c0αα
θG

θG

]
12. α0,β0, UG,UD → Two of three along the UD = 0 curve.

13. α0, β0,UG, UD → δ
2
C−1

0 r .

14. α0, β0,UG, UD → δ
2
C−1

0 r

15. α0, β0, UG, UD → δ
2
C−1

0 r

16. α0, β0, UG,UD → Three of three along the UD = 0 curve.

Thus we have established our four candidates in the proposition statement. To handle the
abstain scenario, we check each candidate produced in the process above by plugging the
strategy to our formula for UG. If none yield positive utility, then the generalist prefers to
abstain.

9 Helper Lemmas and Analysis

Here we write out helper Lemmas and analysis for our proofs concerning backfiring and
mutualism.

Lemma 9.1. In the AI regulation game with quadratic costs, any player’s utility is strictly
concave if and only if their cost matrix is positive definite.

Proof. The generalist utility function is given by UG = δrTγ1−γT
0 C0γ0. Observe this is twice

differentiable everywhere. Thus the function is strictly concave in α0, β0 if and only if its
Hessian derivative is negative definite. We compute the Hessian as follows:

H :=

[
∂2UG

∂α2
0

∂2UG

∂α0∂β0

∂2UG

∂β0∂α0

∂2UG

∂β2
0

]
= −2C0.

This matrix is negative definite if and only if C0 is positive definite.
The proof for the domain specialist follows the same steps.
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Lemma 9.2. In any AI regulation game with separable quadratic costs, if there is no regu-
lation, both players will invest a non-zero amount in each attribute.

Proof. By Lemma 9.1, we are given that the utilities are strictly concave. Thus, the proof
consists of showing that 1) the utility function is greater than or equal to 0 at the origin
point of zero investment and 2) the gradient points towards the interior of the feasible set
everywhere along the boundaries.

Here we prove the two conditions for UG:

1. UG(α0 = 0, β0 = 0) = δrT 0⃗− 0 = 0

2. We prove this for each constraint, α0 ≥ 0, β0 ≥ 0:

• ∂UG

∂α0

∣∣
β0=0

= δrα − 2c0,ααα0 = δrα − 0 > 0.

• ∂UG

∂β0

∣∣
α0=0

= δrβ − 2c0,βββ0 = δrβ − 0 > 0.

Here we prove the two conditions for UD:

1. UD(αi = 0, βi = 0) = (1− δ)rTγ0 − 0 ≥ 0

2. We prove this for each constraint, αi ≥ α0, βi ≥ β0:

• ∂UD

∂αi

∣∣
βi=β0

= (1− δ)rα − 2ci,αα(α1 − α0) = (1− δ)rα > 0.

• ∂UG

∂β0

∣∣
αi=α0

= (1− δ)rβ − 2ci,ββ(βi − β0) = δrβ − 0 > 0.

10 Proving the Backfiring Result

Below we prove the Theorem 6.1.

Proof. Assume θG = 0 for the entire proof. By Remark 4.3, we’re given that the players
commit to their unconstrained strategy in equilibrium. These were solved in Propositions 4.4
and 4.5. Thus we have the following player’s strategies under no regulation for this setting:

γA
0 =

δ

2
C−1

0 r, γA
1 =

1− δ

2
C−1

1 r. (1)

Our strategy is to show that G’s unconstrained, no-regulation optimum becomes dominated
in the presence of regulation targeting D, which we choose to be arbitrarily close to βA

1 .
Notation. Before we proceed, we introduce some additional notation. Define the set S

to be all feasible pairs of strategies (γ0, γ1). ‘Feasible’ here means those strategies which leave
both G and D with non-negative utility. We use the subscript SθD to track the particular
regulatory threshold. The feasible pairs of strategies in the unregulated game is given by
S0, and the feasible pairs of strategies in a game with threshold θD = 1.5 is denoted S1.5.
We may refer to the unregulated game with the superscript A (for anarchy), e.g. βA

1 refers
to the unregulated safety level. Observe that any set of tuples Sθ can be separated into two
mutually exclusive and collectively exhaustive sets:
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• SMC
θ (for minimally compliant) is the set of all tuples where D’s best response has

safety β∗
1 = θD.

• SC
θ (for contribute) is the set of all tuples where D’s best response has safety β∗

1 > θD.

Now, we provide a sequence of lemmas, with the purpose of establishing the intuition that
all we must do is find some ϵ > 0 and some strategy βR

0 ̸= βA
0 such that G prefers βR

0 to βA
0

and D minimally complies.

Lemma 10.1. For any threshold θD > 0, SC
θ ⊂ S0.

Proof. S0 = SMC
0 ∪ SC

0 = SMC
0 ∪

(⋃∞
t=0 S

C
t

)
⊃ SC

θ .

Lemma 10.2. If θD ≥ βA
1 , backfiring is impossible.

Proof. Assume for contradiction that θ∗D ≥ βA
1 and backfiring occurs. Backfiring would imply

β1(θD = θ∗D) < β1(θD = 0) = βA
1 . However, this would violate the regulation, which we’re

given is greater than βA
1 . Hence we’ve already established the contradiction.

Lemma 10.3. Given a threshold θ, backfiring can occur only if the strategies (γ0, γ1) ∈ SMC
θD

.

Proof. We have established SθD = SMC
θD

∪ SC
θD
, so the proof will show that the strategies in

SC
θ can never exhibit backfiring. This would imply, if backfiring occurs over the feasible set

of strategies Sθ, it is only possible for strategies in SMC
θ . The proof proceeds, first for all

values θD ≥ βA
1 , and then for all values θ < βA

1 .

• For θD ≥ βA
1 , backfiring is impossible generally, as established in Lemma 10.2.

• For θD < βA
1 , start by observing that the anarchy solution (γA

0 , γ
A
1 ) is always feasible.

This solution is the strategy tuple that maximizes the utility of G over S0. Lemma
10.1 tells us that this set, S0, contains all sets of regulated strategies where the play-
ers contribute: Scontribute

θD
⊂ S0. Thus: (γA

0 , γ
A
1 ) := supUG

S0 ⪰G S0 ⊃ Scontribute
θD

→
(γA

0 , γ
A
1 ) ⪰G SC

θD
. Thus the anarchy solution is feasible and dominates all strategies in

Scontribute
θD

.

This completes the proof, and demonstrates that if backfiring is ever to occur, it will exhibit
strategies that are minimally compliant with the regulation.

Backfiring is a regulation yielding lower safety than βA
0 . The claims above state that

backfiring cannot occur if θD > βA
1 and can only occur if the domain specialist minimally

complies. As an immediate corollary, we can claim that backfiring occurs if and only if there
is a regulation θD < βA

1 such that the strategies (γ0(θD), γ1(θD)) ∈ SMC
θD

.

Lemma 10.4. For a given regulation θD < βA
1 in our setting, if G prefers any minimally

compliant strategy γ′
0 to γA

0 , then G’s optimal strategy γ∗
0 ∈ SMC

θD
and the regulation backfires.

Proof. We’re given γA
0 is optimal over S0. By Lemma 10.1, SC

θD
⊂ S0. Since θD < βA

1 , γ
A
0

remains feasible. The only new strategies available to G are those in SMC
θD

. Thus, if we
denote utility-domination using ≻, we have γ′

0 ≻ γA
0 ⪰ g∀g ∈ SC

θD
. This implies G’s optimal

strategy γ∗
0 is either γ′

0 or otherwise belongs to SMC
θD

.
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Thus our task is to find some regulation θD and some strategy γ′
0 such that UG(γ

′
0) >

UG(γ
A
0 ).

Lemma 10.5. For small ϵ > 0, if the given conditions are met, the following G strategy
dominates no regulation:

γ′
0 =

[ δrα
2c0,αα

(
βA
0 − 2ϵ

)
βA
0 − 2ϵ

]
Proof. Equation 1 give us G and D’s strategies under no regulation. Given G’s candidate
strategy stated in the Lemma, we compute D’s best response. Observe this must be a
minimally-compliant best response, because G’s strategy was constructed to be a difference
βA
0 + ϵ from D’s regulatory floor. Thus, by Proposition 4.4, we have:

γ′
1 =

[
α′
0 +

(1−δ)
2c1αα

− c1,αβ

c1αα
θD

θD

]
We compare G’s utility in the two scenarios:

1. (γ′
0, γ

′
1) → U ′

G = δ (rαα
′
1 + rββ

′
1)− c0,αα(α

′
0)

2 − 2c0,αβα
′
0β

′
0 − c0,ββ(β

′
0)

2

2. (γA
1 , γ

A
1 ) → UA

G = δ
(
rαα

A
1 + rββ

A
1

)
− c0,αα(α

A
0 )

2 − 2c0,αβα
A
0 β

A
0 − c0,ββ(β

A
0 )

2

We compute the difference ∆UG = U ′
G − UA

G . We expand both terms and take the limit as
ϵ ↘ 0 to get the following:

lim
ϵ↘0

∆UG =
δ(1− δ)rβ

2c1ββ

(
rβ −

c1,αβ
c1,αα

rα

)
A sufficient condition for this quantity being positive is stated below. The reason is all

terms outside the parentheses are given as positive.

rβ >
c1,αβ
c1,αα

rα.

Notice the above condition is given as it is one of the conditions in remark 4.3.7

Thus, we have shown that for small positive ϵ, the generalist prefers the backfiring strat-
egy to the unconstrained optimum γA

0 . By Lemma 10.4, the optimal regulated strategy is
an element in SMC

θD
and the regulation backfires.

11 Proof of the mutualism result

Here we prove Theorem 6.2, that for a swath of games there exists a set of regluations that
mutually improve the player’s utilities.

7This is also the condition for having a non-zero safety investment when costs are convex, and intuitively,
backfiring is impossible when safety investment is zero.

33



Proof. Observe that we only have to provide a single instance of regulation that does better
than the unregulated optimal γA

0 , γ
A
1 to show that there exists a Pareto improvement effect

of regulation. We consider the following minimal-compliance strategies (using Proposition
4.4 and 4.5):

γ′
0 =

[ δrα
2c0,αα

− c0,αβ

c0,αα
θG

θG

]
, γ′

1 =

[
α0 +

(1−δ)rα
2c1,αα

− c1,αβ

c1αα
θD

θD

]
.

Observe these are feasible because they are compliant and, for small ϵ, the performance
investment is positive.

Lemma 11.1. For the specified conditions, UG(γ
′
0, γ

′
1) > UG(γ

A
0 , γ

A
1 )

Proof. Start by computing the change in the generalist’s performance and safety investments
between these strategies. The change in safety investment is simply ∆β0 = θG − βA

0 = ϵ.
The change in performance investment is given by:

∆α0 =
δrα

2c0,αα
− c0,αβ

c0,αα

(
δ

2 detC0
(−c0,αβrα + c0,ααrβ + ϵ)

)
− δ

2 detC0
(c0ββrα − c0αβrβ)

= δrα
2c0,αα

+
c20,αβ

c0,αα

δrα
2 detC0

−
�������
c0,αβ

δ
2 detC0

rβ +
c0,αβ

c0,αα
ϵ− δ

2 detC0
c0,ββrα +

�������
c0,αβ

δ
2 detC0

rβ

=
(

δ
2c0,αα

+
c20,αβδ

c0,αα2 detC0
− δc0,ββ

2 detC0

)
rα +

c0,αβ

c0,αα
ϵ

= δrα
2

(
1

c0,αα
+

c20,αβ

c0,αα(c0,ααc0,ββ−c20,αβ)
− c0,ββ

c0,αα

)
+

c0,αβ

c0,αα
ϵ

= δrα
2
�����������(

detC0+c2αβ−c0,ααc0,ββ

c0,αα detC0

)
+

c0,αβ

c0,αα
ϵ

=
c0,αβ

c0,αα
ϵ.

By the same logic, we solve for the change in the players’ strategies. First, ∆β1 = β′
1−βA

1 =
βA
1 + 2ϵ− βA

1 = 2ϵ. The change in performance is given by:

∆α1 = α′
1 − αA

1

=
[
α′
0 +

(1−δ)rα
2c1,αα

− c1,αβ

c1,αα
(θD − β′

0)
]
−

[
αA
0 + (1−δ)

2 detC1
(c1,ββrα − c1,αβrβ)

]
= ∆α0 +

(1−δ)rα
2c1,αα

− c1,αβ

c1,αα

(
(1−δ)
2 detC1

(−c1,αβrα + c1,ααrβ) + ϵ
)
− (1−δ)

2 detC1
(c1,ββrα − c1,αβrβ)

=
c0,αβ

c0,αα
ϵ+ (1−δ)rα

2c1,αα
− c1,αβ

c1,αα

(
(1−δ)
2 detC1

(−c1,αβrα + c1,ααrβ) + ϵ
)
− (1−δ)

2 detC1
(c1,ββrα − c1,αβrβ)

= ϵ
(

c0,αβ

c0,αα
− c1,αβ

c1,αα

)
.

The change in G’s cost is given by:

∆(G’s cost) =

[
∆α0

∆β0

]T
C0

[
∆α0

∆β0

]
= c0,αα(

c0,αβ

c0,αα
)2ϵ2 + 2

(
c0,αβ

c0,αα
ϵ
)
ϵ+ c0ββϵ

2
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Notice these are all ϵ2 terms, meaning as ϵ is brought to very small positive values, they
approach zero at an exponential rate. The contribution to G’s revenue is given by:

∆(G’s revenue) = δ(rα∆α1 + rβ∆β1)

= δ
(
rαϵ

(
c0,αβ

c0,αα
− c1,αβ

c1,αα

)
+ rβ2ϵ

)
Notice these are terms of ϵ, whereas the cost effects are solely terms of ϵ2. Therefore, for
sufficiently small ϵ, we say:

lim
ϵ↘0

∆UG = δ

(
rαϵ

(
c0,αβ
c0,αα

− c1,αβ
c1,αα

+ 2rβϵ

))
Using the given conditions, we know:

lim
ϵ↘0

∆UG > 0 ⇐⇒ δ
(
rαϵ

(
c0,αβ

c0,αα
− c1,αβ

c1,αα

)
+ 2rβϵ

)
> 0

⇐⇒ rα

(
c0,αβ

c0,αα
− c1,αβ

c1,αα

)
+ 2rβ > 0

⇐⇒ rαc0,αβ

rβc0,αα
− rαc1,αβ

rβc1,αα
> −2.

Our conditions strictly bound the absolute value of both terms on the left hand side below
1, so this completes the Lemma’s proof.

Lemma 11.2. For the specified conditions, UD(γ
′
0, γ

′
1) > UD(γ

A
0 , γ

A
1 )

The limiting effect on D’s revenue is calculated exactly the same way as above, except
that the revenue expression is multiplied by (1− δ) instead of δ.

This completes the proof, as both players are better off under the regulation.
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