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Abstract

Electric power systems are undergoing a major transformation as they integrate intermittent
renewable energy sources, and batteries to smooth out variations in renewable energy production.
As privately-owned batteries grow from their role as marginal “price-takers” to significant players
in the market, a natural question arises: How do batteries operate in electricity markets, and how
does the strategic behavior of decentralized batteries distort decisions compared to centralized
batteries? We propose an analytically tractable model that captures salient features of the
highly complex electricity market. We derive in closed form the resulting battery behavior
and generation cost in three operating regimes: (i) no battery, (ii) centralized battery, and (ii)
decentralized profit-maximizing battery. We establish that a decentralized battery distorts its
discharge decisions in three ways. First, there is quantity withholding, i.e., discharging less
than centrally optimal. Second, there is a shift in participation from day-ahead to real-time,
i.e., postponing some of its discharge from day-ahead to real-time. Third, there is reduction in
real-time responsiveness, or discharging less in response to smoothing real-time demand than
centrally optimal. We also quantify the impact of the battery market power on total system
cost via the Price of Anarchy metric, and prove that it is always between 9/8 and 4/3. That
is, incentive misalignment always exists, but it is bounded even in the worst case. We calibrate
our model to real data from Los Angeles and Houston. Lastly, we show that competition is very
effective at reducing distortions, but many market power mitigation mechanisms backfire, and
lead to higher total cost. The work provides stakeholders with a framework to understand and
detect market power from batteries. It also shows that the potential loss from battery market
power is relatively small compared to the cost reduction achievable from having enough battery
capacity in the system.
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1 Introduction

Climate change is the defining issue of our time [IPCC, 2023], and countries and regions have

pledged to reduce their carbon emissions through international agreements and carbon neutrality

pledges. For example, the United States and the European Union planned to reach net zero by

2050. The power sector in the United States is one of the largest emitting sectors, accounting for

around 30 percent of total U.S. emissions [CBO, 2022].

To achieve this goal, the electric power systems are currently undergoing a major transformation

by incorporating renewable energy resources, such as solar and wind. However, the availability

of these renewable resources depends on exogenous factors that cannot be controlled. Because

supply of power has to equal demand at all times on the electric grid, the system operator has

to compensate for the real-time variability in one of two ways. The traditional way is to call

up fast-responding “peaker” plants, but these plants are both expensive and have high emissions.

Alternatively, the system can have enough energy storage resources, such as batteries, to smooth

out fluctuations and variations in energy production and consumption over the course of a day. As

costs fall and incentive schemes for renewables and batteries are enacted, battery storage capacity

has been growing rapidly since 2021. California and Texas have emerged as front runners in the

deployment of battery storage, with 8.6 GW and 4.1 GW of battery, respectively, as of April 2024,

while other states are only starting to deploy batteries at scale [EIA, 2024b].1 In deregulated

electricity markets such as California and Texas, these grid-scale batteries, like other generation

assets, are often privately owned by profit-driven investors. As batteries grow from their previous

role as marginal “price-takers” to significant players in the market, a natural question arises:

How do batteries operate in electricity markets, and how does the strategic behavior of

decentralized batteries distort decisions compared to centralized batteries?

System operators have already observed strategic battery behaviors leading to negative out-

comes. The Australian Energy Regulator reported strategic behavior from its (relatively small)

100MW/150MWh battery during tight market conditions on March 16-17, 2023 [AER, 2023,

Parkinson, 2023]. After a generator outage (March 16) and a change in forecast price (March

1To put these numbers in context, California and Texas electricity demands on a typical day are around 20–40
GW and 40–70 GW, respectively, so California’s batteries are already a substantial fraction of demand.
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17), the battery rebid its capacity from the price floor up to $10,000/MWh and $15,000/MWh,

respectively, setting the price. The report concludes, “This short-term strategic rebidding to capi-

talise on market conditions had the effect of exacerbating high prices. Again, while this behaviour

may not be a breach of the rules, the ability of these participants to increase price through these

rebidding strategies highlights the market power that participants may be able to exercise at certain

times.” Batteries are also strategic in “normal” market conditions. California’s special report on

battery storage [CAISO, 2023b] suggests that batteries avoid being scheduled in day-ahead on aver-

age, preferring to participate in real-time markets. This strategic shift from day-ahead to real-time

means the system operator has to commit additional more expensive generators in day-ahead.
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Figure 1: Los Angeles’ “duck curve,” hourly mean net demand by year, 2019–2023. The net demand
is the energy demand minus renewable production. (Source: CAISO)

To understand the role of batteries, we must first understand the challenges from the mismatch

between renewable energy production and demand. As an illustrative example, in Figure 1, we

depict for the years 2019-2023 and for Los Angeles, the average hourly net load (or net demand),

defined as the energy demand minus renewable production, which needs to be covered by conven-

tional generators. The net demand admits a peak around 7–8PM when solar wanes and people

come back from work, while during the off-peak around noon the net load is very low and has been

getting lower every year due to increasing solar capacity. This leads to an increasingly steep ramp
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period during which energy generation needs to be increased quickly, and only a subset of expensive

and emissions-heavy generators can do the task, negating part of the benefits of renewables. Due

to its shape, this curve is often referred to as the “duck curve.”

Batteries are a natural complement to renewables in the electrical grid because they can charge

during off-peak when energy is plentiful and price is low, and discharge during peak when energy

is scarce and price is high. In doing so, batteries smooth out the demand by arbitraging between

the off-peak and the peak periods during the day and make a profit from the price difference. As

a price taker, such a battery is straightforwardly beneficial, but as discussed earlier, batteries are

now a substantial fraction of demand in most regions in California and other markets are about to

follow, and strategic behavior and market power become questions of interest.

Electricity markets are especially susceptible to the exercise of market power because demand

and supply must be exactly equal at every location at any given time. Even though there are many

grid-scale batteries in California, each can resemble a local monopoly in its region, because the

transmission line infrastructure limits the amount of energy that can be transferred across regions.

California regulators acknowledged that increasing volatility from renewables further exarcerbates

the market fragmentation problem and approved a $7.3 billion plan to build additional transmission

capacity [St. John, 2023]. The fragmented nature of the market is evident from the fact that

wholesale electricity prices are very different across locations in California. For example, on May

27, 2024 at noon (off-peak), the real-time “base” price is $4/MWh but the congestion prices in

some regions of California were as high as $120/MWh.

Starting from the deregulation of electricity markets in the 1990s, and learning from painful

historical lessons along the way,2 a large literature on detecting and mitigating market power has

developed, and all US short-term wholesale markets have adopted various forms of market power

mitigation procedures [Graf et al., 2021]. These measures primarily target conventional generators,

because until recently the only feasible storage technology at scale was pumped hydro, which were

relatively small. However, grid-scale battery systems are now projected to rise rapidly, and they

are crucial for integrating renewables into the grid. These developments bring the questions around

the potential for battery market power back to the forefront of electricity market design.

Batteries also pose an additional challenge to regulators more used to monitoring market power

2Most notoriously, the 2000–2001 California electricity crisis caused by flawed market design and market manip-
ulation by energy companies, mainly Enron [Weare, 2003].

4



from generators. The cost bids of conventional generators are largely determined by known physical

and operational constraints, which allows the system operators to ensure that generators’ bids are

“reasonable” most of the time based on such characteristics. The bids of batteries, however, are

determined by (their predictions of) opportunity costs and not just physical marginal costs like

generators. The questions of what form of strategic behavior a battery might take, and how it

impacts system performance, are therefore crucial questions.

1.1 Summary of Main Contributions

At a high level, this paper identifies an important question – market power of batteries – and

proposes a tractable model that is rich enough to analyze how batteries behave strategically in a

two-settlement market, isolate the effects at play, and quantify their impact on system cost.

Modeling Contribution. We view the formulation of our model as one of our main contribu-

tions, because our model is fully microfounded and rich enough to incorporate salient institutional

features yet simple enough to solve in closed form and isolate the main forces at play. In particular,

we capture the two-settlement structure that is common in most markets, the duck curve demand

trend (peak and off-peak), demand stochasticity and autocorrelation, and heterogeneity in genera-

tor ramp speeds. We can directly see from solutions to the model how each of these factors impact

the types of strategic behaviors of batteries, and how they impact the resulting cost, under different

operating regimes.

Main Features of the Model. We model a two-settlement centralized market with two periods

in a day, a peak period and an off-peak period. The day-ahead market clears for each period at

the beginning of the day with a day-ahead demand forecast. Then for each period, the real-time

market clears after the demand for that period is realized. We assume that the demands in two

periods are random and correlated, to investigate how batteries, as fast responders, react to demand

stochasticity and temporal dependence. This form of modeling allows us to disentangle the two

different kinds of demand-smoothing done by batteries: (i) intertemporal demand smoothing, or

transferring predictable components of demand from peak to off-peak period, and (ii) smoothing

unpredictable components of demand, by being responsive in real-time, discharging more when

demand is unusually high, and vice versa, to reduce the cost impact of deviations from forecast.
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We also assume that the battery’s charge and discharge behavior has price impact. In other

words, the price is endogenously determined.

Lastly, we microfound the model by assuming an exogenous set of generators. Only a subset

of generators have fast enough ramping time to participate in real-time, and other generators can

only participate in day-ahead. Given the supply curves of “slow” and “fast” generators, the prices

in both day-ahead and real-time are set at a point where the supply from the generators equals the

exogenous consumer demand net battery charge/discharge.

Battery Behavior. We analyze the behavior of a large battery in two regimes: the centralized

regime, in which the system operator can control the battery charge/discharge to minimize system

cost, and the decentralized regime, in which the battery independently makes charge/discharge

decisions to maximize its profit. We find that in the centralized case, the battery perfectly smoothes

the predictable demand in day-ahead, and unpredictable demand in real-time. Therefore, there is

no economic withholding of any kind under this ideal baseline.

In the decentralized case, we show that the strategic battery distorts its discharge decisions

relative to the centrally optimal in three ways. First is quantity withholding: expected total

battery discharge is less than centrally optimal. Second is the shift from day-ahead to real-time:

expected real-time battery discharge is positive, whereas it is zero in the centralized case, as the

centrally optimal battery only responds to mean-zero demand fluctuations in real time. In other

words, the battery “hides” part of its capacity in day-ahead, reducing its day-ahead participation,

making the day-ahead planning more costly. Third is reduction in real-time responsiveness: the

strategic battery discharges less to smooth real-time demand fluctuation, i.e., to reduce the cost

impact of real-time deviations from forecast.

The first two types of distortion (quantity withholding and shift from day-ahead to real-time) are

about arbitrage across time from peak to off-peak, and the relative weight between them depends on

the generation composition. If most generators are fast (and can participate in real-time), then the

shift from day-ahead to real-time dominates. If most generators are slow, then quantity withholding

dominates. We elaborate on this in Section 5 (cf. Table 1).

Generation Cost Comparison. We compare the generation cost in the three regimes. Central-

ized cost is lower than decentralized cost, which is lower still than no-battery cost. Although there

6



is incentive misalignment, having an independent battery is still better than not having one. We

quantify the incentive misalignment by the ratio between the cost reduction achieved by a centrally

controlled versus profit-maximizing battery, which we call the Price of Anarchy (PoA). We prove

that PoA is between 9/8 and 4/3, and PoA is decreasing (i.e. the incentive alignment is better) in

the share of fast generators and the steepness of the duck curve.

Numerical Illustration. We illustrate our results by calibrating our model with real data in

two regions: Los Angeles and Houston. We find that, with a single monopoly battery, market

power could lead to a nontrivial increase in generation cost, and all three types of distortion can

be significant, but the effect of market power is relatively small compared to the gains from having

enough battery capacity in the system.

1.2 Related Work

Our paper is related to several streams of literature.

Sequential Markets and Market Power Our work is most closely related to the literature on

market power in sequential markets, starting with the seminal work of Allaz and Vila [1993]. The

latter considers producers (“generators”) rather than batteries, but some of their insights transfer to

our setting. Just like in Allaz and Vila [1993], producers use the forward (“day-ahead”) market even

under complete certainty and perfect foresight because the forward market changes the marginal

revenue on the spot (“real-time”) market. Under market power, the forward market improves both

producer profit and social welfare, because the producer can use the day-ahead market to reduce

withholding. Ito and Reguant [2016] extends the static Cournot game of Bushnell et al. [2008] to

sequential markets, and quantifies market power with limits to arbitrage in the Iberian electricity

market. Borenstein et al. [2008] and Saravia [2003] also consider market power and arbitrage in

electricity markets in California and New York, respectively. You et al. [2019] considers a fixed

strategic load that can allocate to day-ahead or real-time. While these works focus on (perfect or

imperfect) arbitrage between day-ahead and real-time by generators or purely financial “virtual”

bidders and only assume one time period, our work assumes that generators are nonstrategic and

focuses also on the arbitrage between peak and off-peak time periods by batteries.
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Renewable Energy Operations. There is a vast literature on renewable energy in operations;

for surveys, see e.g. Agrawal and Yücel [2021], Parker et al. [2019], Sunar and Swaminathan [2022].

Here, we highlight modeling works that are related to batteries, sequential markets, or market

power. Sioshansi [2010] observes that price smoothing by batteries create welfare gains but the

incentives may not be properly aligned for centrally optimal storage use. Sioshansi [2014] shows

that the introduction of storage always increases welfare when generators are nonstrategic, but it can

reduce welfare when generators are strategic. However, Sioshansi [2014] assumes that the demand

is deterministic and clears in one stage, whereas we highlight the role that demand stochasticity

and sequential market clearing play in different forms of distortion in battery behavior. Peura and

Bunn [2021] uses a game-theoretic model to analyze how intermittent renewable production affect

electricity prices in the presence of a forward market. While they do not consider batteries, the

use of forward markets to improve welfare and reduce market power as in Allaz and Vila [1993]

is related to our work. Acemoglu et al. [2017], Genc and Reynolds [2019] and Bahn et al. [2021]

consider the impact of ownership models (similar to our centralized versus decentralized regimes)

on competition and market power in renewables without batteries. Kaps et al. [2023] and Peng

et al. [2021] develop models of joint investment in renewables, conventional generators, and storage.

Wu et al. [2023] and Qi et al. [2015] consider investment in storage in different locations, but do

not consider incentives. Zhou et al. [2016] analyzes storage operations and energy disposal in the

presence of negative electricity prices.

There is also a nascent line of work on smoothing demand or shaving the peak beyond the use

of batteries. Agrawal and Yücel [2022] analyzes the design of demand response programs, paying

consumers to reduce consumption when the grid is under stress. Fattahi et al. [2023, 2024] analyze

the use of direct load control contracts to smooth demand. Gao et al. [2024] studies different ways

of aggregating distributed energy resources. Electric vehicles can also be used to shave the peak,

although such uses are currently limited [Wu et al., 2022, Perakis and Thayaparan, 2023].

Market Power in Electricity Markets. There is a large empirical literature in economics

measuring market power in electricity markets; see [Kellogg and Reguant, 2021, Section 4.2] for a

survey, and Graf et al. [2021] for market power mitigation mechanisms. This literature is mostly

focused on market power of generators; the exceptions are Karaduman [2023] and Butters et al.

[2023]. Karaduman [2023] does not model sequential market clearing and focuses more on numer-
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ically computing a dynamic equilibrium between a monopoly storage and conventional generators

calibrated to the South Australian electricity market. Like us, he documents the discrepancy be-

tween private and social incentives. In contrast, Butters et al. [2023] assumes that batteries do not

have market power and focuses more on the impact of different incentive schemes on investments.

Battery Market Power in Power Systems There is a body of work in the power systems

literature that study the market power of a monopoly battery with price impact [Mohsenian-Rad,

2015, Bjørndal et al., 2023, Hartwig and Kockar, 2016, Huang et al., 2018, Schill and Kemfert, 2011].

Other works design algorithms to maximize battery profit over time [Tómasson et al., 2020, Ward

and Staffell, 2018, Cruise et al., 2019]. Whereas these papers propose detailed models in the form

of large-scale mathematical programs that are numerically solved, our work gives a stylized model

that can be directly analyzed and solved in closed form. The two lines of work are complementary;

black box models can incorporate more details, while stylized models give sharp analytical insights

and economic intuition. In particular, it is generally understood from this literature that batteries

can strategically withhold capacity, but our work clarifies different forms of withholding and how

they depend on market fundamentals.

2 Model

Two-Settlement Market. We consider a two-settlement centralized market clearing that is

used by all wholesale electricity markets in the United States. The day-ahead (DA) market clears

before the day begins, setting a price in each time period such that the amount of supply from all

generators below the price equals the mean demand for that period. In other words, we assume that

the system operator’s day-ahead demand forecast is unbiased. Then, during the day, the real-time

(RT) market clears the incremental real-time demand (henceforth just “RT demand”), which is the

difference between the realized demand and the pre-committed DA demand. The RT demand can

either be positive (higher demand than expected) or negative (lower demand than expected). If

the RT demand is positive (resp. negative), a subset of generators that are fast enough to adjust in

real-time are called on to increase (resp. decrease) production (cf. the generators section below).

The battery makes the charge/discharge decision and amount after that period’s actual demand is

realized, affecting the net demand for that period (cf. the battery participation section below).
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Generators. We model two types of generators: generators that have a slow ramp speed can

only participate in DA (henceforth “slow generators”), whereas generators with a fast ramp speed

can participate in both DA and RT (henceforth “fast generators”). We assume that we have a

continuum of infinitesimally small generators, and each generator is specified by the cost. All

conventional generators are assumed to be non-strategic, that is generators bid their true marginal

cost. Each generator also follows the market operator’s dispatch instructions on whether they

produce. This is an intentional modeling choice to capture the shape of the supply curve and how

it determines the clearing price and generation cost, while abstracting away non-convex elements

such as start-up and no-load costs which we instead capture in a stylized way via the dichotomy

between slow and fast generators. This model of generators is adapted from You et al. [2019].

(While thinking of generators as a continuum is convenient, it is not necessary: we get the same

result with a finite set of generators with zero start-up and no-load costs whose combined cost

functions correspond to the supply curve.)

The non-strategic generators assumption is realistic because system operators (regulators) know

the engineering characteristics of each generator and the fuel costs, so they can reliably estimate

each generator’s “true” marginal cost, and they can cap and penalize generators that overbid. For

example, California’s Department of Market Monitoring publishes annual reports that calculate the

“price-cost markups” which are 3.6%, 3.1%, and 2.5% on 2023, 2022, and 2021, respectively [CAISO,

2023a, 2022, 2021]. These slight positive markups show that bids in the California wholesale energy

market have been competitive, which is not surprising given that regulators have been regulating

conventional generators closely since the early 2000s. In contrast, batteries are a much newer

resource, and they are also harder to regulate because it is not clear what the “correct” charge

and discharge prices and quantities should be; they depend on not just operating costs but also

opportunity costs and price forecasts. Therefore, we assume that the battery is strategic while

generators are not to study the potential effect of battery market power.

Let Gs(λ), respectively Gf (λ), be the mass of slow, respectively fast generators, with cost less

or equal than λ. The cost distributions Gs(·) and Gf (·) of slow and fast generators are primitives

of the model, assumed to be strictly increasing.

Demand Process. There are T time periods in a day, indexed by t ∈ {1, 2, . . . , T} ≡ [T ]. For

each t, period t net demand is a random variable Dt such that all the net demands (D1, D2, . . . , DT )
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is drawn from a known joint distribution π. This captures the fact that the net demand in each

period is random, and net demands across periods can be correlated. For each t, we define D1:t ≡

(D1, D2, . . . , Dt), µt ≡ E[Dt] and σ2
t ≡ Var(Dt), and µ̄ = (µ1 + · · · + µT )/T . For t′ < t, define

µt|d1:t′ = E[Dt|D1:t′ = d1:t′ ].

Recall that this demand process describes net demand, so uncertainties in the net demand

comes from both consumer demand and renewable production, and they are both exogenous. In

particular, we assume that electricity demand is perfectly inelastic and exogenous. This is well-

supported by empirical evidence [Joskow, 2006]. We model the demand process this way because

we want to capture the fact that markets with high renewable and battery penetration such as

Los Angeles exhibit a duck curve (cf. Figure 1): the price is highest in the evenings when solar

generation wanes (the sun sets) and demand peaks as people come home from work, and the price

is lowest in midday when solar production peaks. Note that our net demand representation is

very flexible. We can set T = 24 so each period corresponds to each hour of the day. Indeed, in

every electricity market, the day-ahead bidding is hourly. In real-time, there could be bidding at

a more fine-grained intervals than hourly – say, every 15 minutes (California) or 5 minutes (other

US markets) – but here we will also assume hourly for simplicity.

Battery Participation. We will first assume that there is a single monopoly battery. This is to

highlight the market power of the battery in the case where it is strongest. We will soon show that

the market power is bounded even in this extreme case, and the battery market power will shrink

even further when more realistic restrictions on the batteries are added. (We will later relax this

assumption and consider multiple competing batteries in Section XXX.)

Before the day, the battery decides on the DA discharge amount zDA
t day-ahead for each period

t ∈ [T ]. These are scalar decision variables. Then the real-time scenario materializes: for each

t ∈ [T ], the previous and current demands D1:t ≡ (D1, . . . , Dt−1, Dt) are realized, then depending

on the demand realization, the battery decides on the incremental RT discharge amount zRT
t (D1:t),

so that the actual discharge is zDA
t + zRT

t (D1:t). These are policy (or functional) decision variables.

Note that the battery discharging (resp. charging) is represented by positive (resp. negative) z.

The battery is assumed to have no state-of-charge constraint and no efficiency losses. Again, we

can relax these assumptions in Section XXX but we assume these both for simplicity and to show

that the battery market power is limited even when the battery is most powerful. While our model
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features only one day (with multiple time periods in a day), we should interpret the model as a

day in steady state. Equivalently, we have the same day that happens day after day. The battery

cannot produce its own energy, so the total energy charged must equal the total energy discharged

(plus the cycle inefficiency loss, which we assume to be zero for now). Also, we say “day” but our

framework can also cover the case of multiple days, e.g., we can set T = 48 for a 2-day demand

forecast and battery planning horizon.

Therefore, the battery’s decision variables are zDA
t and zRT

t (D1:t) for t ∈ [T ] subject to the

condition that the net discharge throughout the day is zero for each demand realization:

T∑
t′=1

zDA
t′ = 0,

T∑
t′=1

zRT
t′ (D1:t′) = 0 for every (D1, . . . , DT ) in the support.

These restrictions capture the fact that batteries cannot produce produce energy, only shift it across

time, and that because there is no energy loss from charging and discharging, the total charging

equals total discharging over the planning horizon, most conveniently taken to be a day. Also,

we let the constraints bind on both DA and RT separately because, even though the day-ahead

transactions are purely financial, the system operator still wants the battery to submit a physically

feasible operating plan. In Section XXX, we analyze an alternative scenario where constraints only

bind in real-time:
∑T

t′=1 z
DA
t′ + zRT

t′ (D1:t′) = 0.

We can set T to correspond to a day (even though, as previously discussed, our framework

naturally accommodates multiple days) because batteries typically have negligible net daily dis-

charge: batteries overwhelmingly arbitrage between peak and off-peak periods within a day rather

than between days. This is evident from the data. For each year in 2021–2023, we can calculate

the mean absolute daily discharge over the year, which captures the average net daily position of

batteries over the year. This net position is 1.0%, 2.9%, and 1.1% of total battery capacity in 2021,

2022, and 2023. The daily charge cycle of batteries is by design: less than 7% of installed storage

have duration exceeding 4 hours [Denholm et al., 2023].

Note that while we model the battery as choosing a quantity in each scenario, the quantity

discharged in practice depends on the specific market framework, which broadly falls into two

categories. First is self-scheduling: the battery can decide the quantity to discharge in each period,
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which is the same as our model. Second is economic bidding, where the battery bids the charge and

discharge curves as price-quantity pairs, and the quantity charged/discharged is determined from

market clearing conditions. Given that the battery is the only strategic player in the environment,

the battery can choose the bid curves to achieve any desired quantity level.

Net Demand and Price Formation Process. The DA demand in each period t ∈ [T ] is taken

to be the mean µt of Dt, from the system operator’s unbiased demand forecast. With the battery

discharge, the DA and RT net demands for each period t ∈ [T ] are given by dDA
t = µt − zDA

t and

dRT
t (D1:t) = Dt − µt − zRT

t (D1:t). Note that the RT net demand is the incremental demand, i.e.,

the adjustment to the quantity cleared in day-ahead. (We slightly abuse the terminology here.

The traditional definition of net demand is system demand minus renewable production, which is

covered by conventional generators and batteries; this corresponds to D1 and D2 in the demand

process section earlier. The “net demands” dDA
t , dRT

t in this section are covered by conventional

generators only.)

In each time t, the DA price λDA
t is set at the market clearing price, that is, the price such that

the energy produced by generators with costs below the price exactly equals the net demand:

Gs(λ
DA
t ) +Gf (λ

DA
t ) = dDA

t . (1)

In RT, the price λRT
t is set such that the total energy produced equals the net demand (DA

demand plus incremental RT demand). However, slow generators with total energy output Gs(λ
DA
t )

can no longer be adjusted in real-time, so the system operator sets the price so that the RT

generators adjust their output to match the realized net demand:

Gs(λ
DA
t ) +Gf (λ

RT
t ) = dDA

t + dRT
t . (2)

Equations (1) and (2) relate the net DA and RT demands dDA
t , dRT

t to the DA and RT prices

λDA
t , λRT

t . (Note that dRT
t and λRT

t depend on D1:t which we omit for brevity.) We can invert

these to get prices in terms of net demands.

We note that if RT demand is zero (dRT
t = 0, no adjustment to demand), then DA and RT

prices are equal: λDA
t = λRT

t . If RT demand is positive (resp. negative), then the RT price is
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higher (resp. lower) than the DA price.

Generation Cost. As the price formation process suggests, the slow generators are cleared in

DA: they produce if and only if their costs are below λDA
t . The fast generators are cleared in

RT: they produce if and only if their costs are below λRT
t . The total generation cost follows from

integrating the mass of generators with cost less than the corresponding clearing price, λDA
t for

slow generators and λRT
t for fast generators. Therefore, the total generation cost is given by

T∑
t=1

(∫
λ≤λDA

t

λdGs(λ) + ED

[∫
λ≤λRT

t

λdGf (λ)

])
, (3)

where the expectation is taken over the random demand. This generation cost captures the difficulty

of dealing with off-peak versus peak periods because in there are fewer generators in real-time (only

fast generators can participate), so the real-time prices are more sensitive to the random demand

level and volatility than day-ahead prices, leading to increasing cost because the generation cost

curve is convex. Note that this generation cost expression is separable in t, namely, that the cost

in each period depends only on the production level of fast and slow generators in that period

alone. However, we can also include the ramping cost explicitly, by assuming that generators incur

a ramping cost depending on the difference between the current period and the previous period’s

production levels, which breaks separability and makes the problem more complicated. We do this

extension in Section XXX.

Throughout, our system cost objective is the physical generation cost from conventional gen-

erators. These are the costs that generators actually incur from producing energy, not the prices

they are paid. Generators are paid the market clearing price, which could be higher than their

costs/bids. Because consumers are assumed to be price inelastic, maximizing welfare is equivalent

to minimizing generation cost. To see this, note that the market clearing price determines the price

at which money transfers from the load (demand side) to the system operator and from the system

operator to the generators (supply side). If we “sum up” the welfare of both the demand side and

the supply side, these purely monetary transfers cancel out, and only the “real” physical costs re-

main in the welfare calculation.3 This also matches the prevailing objective of independent system

3If the loads/consumers are price-elastic, the welfare would be the sum of the loads’ utilities minus the physical
generation cost, but inelastic loads do not have utility functions.
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operators in practice: 7“unit commitment” and “economic dispatch” procedures in day-ahead and

real-time both minimize generation cost [Kirschen and Strbac, 2018, Cret̀ı and Fontini, 2019].

Battery Operation Models. We will compare three operating regimes.

• A first benchmark system is one without batteries.

• Centralized participation: In this system, the battery is directly controlled by the system

operator and makes charge/discharge decisions to minimize generation cost.

• Decentralized participation: in this system, the battery is an independent entity that makes

charge/discharge decisions to maximize its own profit.

Note that the DA and RT prices are endogenously determined by the battery’s charge/discharge

decisions, as outlined earlier as part of the price formation process.

Day-Ahead and Real-Time Supply Curves We have the relationships between DA and RT

prices and demands in (1) and (2), which depend on Gs and Gf . Gs and Gf are demand functions

for slow and fast generators, respectively, so we have a flexible way to define the relationship

between demand and price via the specification of Gs and Gf .

We assume that at each price λ, a fraction kf of generators are fast, and ks = 1− kf are slow.

In other words, at any price point, there are fast generators that can adjust their production up

and down. This assumption reflects the operating characteristics of the generators themselves: coal

and nuclear plants are “slow,” whereas natural gas and hydro plants are “fast.” This assumption is

also an implicit model of the system operator’s reserve requirement in day-ahead scheduling, which

ensure this property by committing some fast-responding generators in day-ahead (even when they

are relatively expensive) for reliability. Let G(λ) = Gs(λ) + Gf (λ) be the total supply function,

then Gs(λ) = ksG(λ) and Gf = kfG(λ). Equations (1) and (2) imply

λDA
t = G−1

(
dDA
t

)
(4)

λRT
t = G−1

(
dDA
t +

1

kf
dRT
t

)
. (5)

Note that while G(·) describes a supply curve that maps price to quantity, G−1(·) also describes
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a supply curve, mapping quantity to price. We assume that the supply curve is linear:

G−1(x) = α+ βx, (6)

where α, β ≥ 0 are known constants. The parameter α is the “intercept” (minimum marginal

cost for conventional generators), and the parameter β is the “slope.” The linear supply curve

assumption is commonly made in the literature, e.g., Sioshansi [2010, 2014], Ito and Reguant

[2016], and we also make this assumption primarily for parsimony. We thus have price-demand

relationships of the form λDA
t = α + βDAdDA

t , λRT
t = λDA

t + βRTdRT
t with βDA = β, βRT = β/kf .

These price-demand relationships are similar to those derived in [You et al., 2019, Equations (5)

and (8)]. In this case, we can interpret βDA and βRT as price elasticities of day-ahead and real-time

demand, respectively.4
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Figure 2: California supply curve

Figure 2 shows that the linear supply curve assumption is a good fit for the California market.

It shows the scatterplot and the nonparametric regression fit between the day-ahead price and

the day-ahead net demand, that is, our G−1 function, which is linear over the applicable range.

It is true that in the rare case when the net demand is unusually high, the price could increase

super-linearly; Section XXX analyzes the extension when the supply curve is convex.

4Strictly speaking, they are not price elasticities, because price elasticities are conventionally defined as the ratio
of one percentage (relative) change against another percentage change, whereas our coefficient is the slope, or the
ratio of the absolute price change against the absolute demand change. The intuition governing both is similar.
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3 No Battery Baseline

In the next three sections, we will characterize the optimal battery behavior and the corresponding

generation cost in three regimes: no battery (§3), centralized cost-minimizing battery (§4), and

decentralized profit-maximizing battery (§5). Our results hold for any given distribution π over

(D1, . . . , DT ).

Before we proceed, we first derive an expression for generation cost in terms of demands, which

is used in all regimes we consider. Define the modified DA and RT demands as d̃DA
t = dDA

t ,

d̃RT
t = dDA

t + dRT
t /kf . (Both dRT

t and d̃RT
t can depend on D1:t, but we sometimes omit it for

brevity.) The generation cost is then given by

T∑
t=1

ks

(
αd̃DA

t + β
(d̃DA

t )2

2

)
+ kfED

[
αd̃RT

t + β
(d̃RT

t )2

2

]
. (7)

In the no-battery case, the generation cost is computed from (7) with d̃DA
t = µt, d̃

RT
t (D1:t) =

µt + (Dt − µt)/kf . The proof is given in Appendix A.

Theorem 1 (No Battery). The generation cost under no battery Cost(NB) is given by

Cost(NB) =
T∑
t=1

(
αµt +

β

2
µ2
t +

β

2kf
Var(Dt)

)
.

This no-battery generation cost is a baseline to which we compare the other two regimes,

centralized and decentralized. The generation cost depends only on the marginal mean µt ≡ E[Dt]

and marginal variance Var(Dt) of Dt, and not on the actual distribution beyond these moments,

or the correlation of demands from the two periods. Correlation does not matter because there

is no decision making (i.e., battery) linking the two periods, and the market clears in each period

independently. The generation cost depends on the variance because the generation cost is quadratic

in demand. Variability in demand therefore leads to higher cost. The generation cost is also

decreasing in kf , because a larger fraction of fast generators means that more generators can buffer

the real-time variability of demand. In other words, with more fast generators, less expensive fast

generators around the day-ahead point are enough to satisfy the real-time incremental demand,

and the system does not need to use more expensive generators further away. This is also why kf
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only appears in conjunction with the variance terms and not the mean terms: if the demands are

deterministic (Var(Dt) = 0 for all t), then the cost no longer depends on kf .

4 Battery Operation: Centralized Solution

We now consider the case when there is a battery, and the system operator can directly control the

battery to achieve the system goal, namely, minimize generation cost. The decision variables are

the DA and RT discharges zDA
1 and zRT

1 (D1) for each realization of period-1 demand D1, and the

system operator solves

min
(zDA

t ,zRT
t (·))Tt=1

T∑
t=1

[
ks

(
αd̃DA

t + β
(d̃DA

t )2

2

)
+ kfED

(
αd̃RT

t + β
(d̃RT

t )2

2

)]
,

where d̃DA
t = dDA

t = µt − zDA
t and d̃RT

t = dDA
t + dRT

t /kf = µt − zDA
t + (Dt − µt − zRT

t (D1:t))/kf .

The following theorem gives the optimal battery decisions and the corresponding generation cost.

Theorem 2 (Centralized Battery). The centralized battery discharge decisions are given by, for

each period t,

zDA
t = µt − µ̄

zRT
t (D1:t) =

(T − t)

(T − t+ 1)
(Dt − µt)−

t−1∑
t′=1

1

(T − t′ + 1)
(Dt′ − µt′)

− 1

(T − t+ 1)

T∑
i=t+1

(µi|D1:t
− µi) +

t−1∑
t′=1

T∑
i=t′+1

1

(T − t′)(T − t′ + 1)
(µi|D1:t′

− µi).

We can show that the centralized cost minimization problem is a convex quadratic optimization

problem, whose unique optimal solution can be found from first-order conditions. The proof is

given in Appendix A.

Theorem 2 formalizes the intuition that a centralized battery improve social welfare by “smooth-

ing” demand as much as possible, in the sense that batteries shift demand from “peak” periods,

where it is scarce and expensive, to “off-peak” periods, where it is plentiful and cheap, making the

net demand profile over the day more equalized and smooth. In DA, the net demand in each period

t is µt − zDA
t = µ̄, smoothing net demands between periods to the mean. The RT smoothing is
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more subtle, as we have to make the discharge decision zRT
1 (D1) knowing the realization of period

1 demand D1 but not the period 2 demand D2, and so on. The intuition is most clear with T = 2,

where we have zRT
1 (D1) =

1
2(D1−µ1)− 1

2(µ2|D1
−µ2) and zRT

2 = −zRT
1 . If we replace the unknown

period 2 demand with its conditional mean µ2|D1
, then the incremental RT demands of the two

periods are D1 − µ1 and µ2|D1
− µ2, so the RT discharge is set such that the net RT demands of

the two periods are equalized: (D1 − µ1)− zRT
1 (D1) = (µ2|D1

− µ2) + zRT
1 (D1).

An alternative way to view zRT
t (D1:t) is that it smooths the real-time component of demand

followed by a correlation correction. For T = 2, the incremental demand in period 1 is D1 − µ1 so

the battery shifts half of it at 1
2(D1 −µ1) to period 2. The extra term −1

2(µ2|D1
−µ2) captures the

effect of the demand dependence of period 2 that influences the decision in period 1. On one end

of the spectrum, if D1 and D2 are independent, then µ2|D1
= µ2, so this term is zero, in agreement

with the intuition that if demands are independent, then the future should not influence the current

period’s decision. On the other end, if D1 = D2 always, then µ2|D1
= D1, and µ2|D1

−µ2 = D1−µ1,

so the correlation correction term exactly cancels out the main term, and the battery discharges

zero. This is also in agreement with the intuition that if the two periods are always the same, then

there is no smoothing for the battery to do. The correlation correction intuition also shows that

the real-time battery discharge does depend on the correlation between two demand periods, albeit

implicitly, and that higher demand correlation reduces battery discharge. The perfect smoothing

of demand also implies that prices in two periods are equal for both day-ahead and real-time, so

battery profit is zero. This is centrally optimal but clearly not aligned with the goal of battery

profit. If the battery is instead operated by an independent profit maximizer, then the battery will

notice that the social optimum discharges “too much” and withholds some of its discharge. This is

the source of incentive misalignment that we will quantify in §5.

5 Battery Operation: Decentralized Solution

We now consider the regime when there is an independently operated battery that chooses its

discharge/charge decisions
(
zDA
t , zRT

t (D1:t)
)T
t=1

to maximize its profit. The battery, like other

resources on the grid, pays (resp. gets paid) the market clearing prices λDA
t and λRT

t in DA and

RT when it charges (resp. discharges) in period t. Given that the quantity discharged is zDA
t in

DA and zRT
t in RT (which could be positive or negative), the DA and RT profits in period t are
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λDA
t zDA

t and λRT
t zRT

t . The battery solves

max
(zDA

t ,zRT
t (·))Tt=1

T∑
t=1

λDA
t zDA

t + ED

[
T∑
t=1

λRT
t zRT

t

]
,

where the DA and RT prices are given by (4), (5), and the supply curve is given by (6). We derive

the optimal battery behavior and the corresponding cost in the following theorem.

Theorem 3 (Decentralized Battery). The decentralized battery discharge decisions are given by,

for each period t,

zDA
t =

(2− kf )

(4− kf )
(µt − µ̄)

zRT
t (D1:t) =

kf
(4− kf )

(µt − µ̄) +
(T − t)

2(T − t+ 1)
(Dt − µt)−

t−1∑
t′=1

1

2(T − t′ + 1)
(Dt′ − µt′)

− 1

2(T − t+ 1)

T∑
i=t+1

(µi|D1:t
− µi) +

t−1∑
t′=1

T∑
i=t′+1

1

2(T − t′)(T − t′ + 1)
(µi|D1:t′

− µi)

We can show that the profit maximization problem is also a convex quadratic optimization

problem, whose unique solution can be found from first-order conditions. The proof is given in

Appendix A. As in the centralized case, the discharges have “non-random” components smooth-

ing predictable demand fluctuations between time periods, and “random” components smoothing

demand fluctuation within each period. We discuss each of these components in turn.

Non-random component of discharge. The total expected discharge in period t, zDA
t +

ED[z
RT
t ] = 2

(4−kf )
(µt − µ̄) is strictly less than the centrally optimal discharge (µt − µ̄). We call this

distortion quantity withholding. This form of distortion is familiar from the standard account of

market power. As we observed in §4, centrally optimal battery discharges “too much,” perfectly

smoothing demand resulting in zero profit. The independent battery exercises market power by

withholding capacity, resulting in less total discharge. Quantity withholding increases generation

cost because it makes peak demand higher and off-peak demand lower, which nets out to higher

cost because cost is quadratic in demand. Note that quantity withholding occurs even without

demand randomness. We quantify the extent of quantity withholding by computing one minus the
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ratio between the decentralized and centralized expected battery discharge, which we define as

quantity withholding ≡ 1− (zDA
t )DCN + (ED[z

RT
t ])DCN

(zDA
t )CN + (ED[zRT

t ])CN
=

2− kf
4− kf

. (8)

Note that quantity withholding is defined such that if the decentralized battery (DCN) dis-

charges as much as the centralized battery (CN), then withholding will be zero, whereas if the

decentralized battery has zero discharge, then withholding will be one. Therefore, our definition

captures the percentage of quantity withholding. Quantity withholding (2 − kf )/(4 − kf ) is de-

creasing in kf . Intuitively, this is because more fast generators mean that the battery can discharge

more with less price impact, so the battery needs to withhold less to maximize profit. The quantity

withholding percentage is 1/2 = 50% when generators are mostly slow (kf ≈ 0) and is 1/3 ≈ 33.3%

when generators are mostly fast (kf ≈ 1).

Furthermore, the battery shifts a positive amount of the expected discharge
kf

(4−kf )
(µt − µ̄) to

real time. In contrast, the centrally optimal battery has zero real-time discharge in expectation.

We call this distortion the shift from day-ahead to real-time. Once the monopolist battery al-

ready commits the cleared quantity in the first (day-ahead) market, the battery’s marginal revenue

changes, enabling the battery to discharge more in total. In other words, the shift to real-time,

while undesirable in itself, enables the battery to do less quantity withholding. This intuition is

similar to how a monopolist sells to a population of nonstrategic consumers over two stages: with

a higher-price in the first stage to capture higher-value consumers, and a lower price in the second

stage. The quantity sold is split over two stages, but the total quantity sold is higher than a single-

stage monopoly quantity. This effect is analogous to the forward market equilibrium in Allaz and

Vila [1993], but we are the first to analyze this effect for batteries in electricity markets. A more

informal way to think about this effect is this: because the two markets clear separately each with

exogenous demand, the battery splits its quantity into two markets to reduce the quantity in each

market and thus reduce the adverse price impact, which is increasing in each market’s quantity.

Notably, This shift to real-time is a structural consequence of sequential market clearing by

itself: it still exists even without different elasticities in two markets or demand randomness. Nev-

ertheless, the relative elasticities of the two markets, as determined by the share of fast generators

kf , determines the extent of the shift to real-time. We quantify the extent of shift from day-ahead

to real-time by computing the share of expected discharge in real-time as a fraction of total dis-
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charge, and compare this share between decentralized and centralized regime. In other words, we

define shift from day-ahead to real-time as

shift from day-ahead to real-time ≡ (ED[z
RT
t ])DCN

(zDA
t )DCN + (ED[zRT

t ])DCN
=

kf
2

(9)

Therefore, the shift from day-ahead to real-time is increasing in kf . The shift percentage is

0% when generators are mostly slow (kf ≈ 0) and 50% when generators are mostly fast (kf ≈

1). Intuitively, more fast generators mean that the real-time price impact is less so real-time

participation is more attractive and the battery discharges more in real time. If (almost) all

generators are slow, then the price impact is so large that it is not worth discharging in real time

at all. Instead, the battery exercises market power by quantity withholding; we have seen earlier

that quantity withholding is highest in this slow generator case.

The upshot of our discussion is that the battery strategically distorts the discharge via quantity

withholding and shift from day-ahead to real-time, independent of demand randomness. Both types

of distortion increase generation cost and the relative weight of each type depends on generator

composition. More fast (resp. slow) generators mean more shift from day-ahead to real-time (resp.

quantity withholding). We summarize the expected discharge in day-ahead, real-time, and total,

as well as the extent of quantity withholding and shift from day-ahead to real-time in Table 1.

regime
generator

composition
quantity

withholding
shift from
DA to RT

reduction in
RT responsiveness

decentralized

slow gen.
dominate
(kf ≈ 0)

50% 0% 50%

fast gen.
dominate
(kf ≈ 1)

33.3% 50% 50%

centralized
centrally
optimal

0% 0% 0%

Table 1: Strategic distortions of the battery as a function of generation composition.

Random component of discharge. The random components of zRT
t (D1:t) are all the terms

except the (µt − µ̄) term, namely, the (Dt − µt) and (Dt′ − µt′) terms and the (µi|D1:t
− µi) and

(µi|D1:t′
− µi) terms. The DCN coefficient of every term is 1/2 the corresponding coefficient, half
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of the centrally optimal perfect smoothing. We define the one minus the ratio of the random

component of decentralized versus centralized discharge as reduction in real-time responsiveness:

reduction in real-time responsiveness ≡ 1− 1

2
=

1

2
. (10)

Intuitively, the reduction in real-time responsiveness can also be viewed as a form of battery ex-

ercising market power via quantity withholding, but on the real-time mean-zero component of

demand. This reduction in real-time responsiveness is always exactly 50% on both the realized

demand and the correlation correction components. Just as we argued in the centralized case, the

terms (µi|D1:t
− µt) can be viewed as “correlation corrections” because it is zero when Di and D1:t

are independent.

6 Comparing Generation Costs Across Different Regimes

We have derived battery discharge decisions and the corresponding generation costs under three

regimes: no battery (Theorem 1), centralized battery (Theorem 2), and decentralized battery

(Theorem 3). We can now compare generation costs (which are the system operator’s objectives)

between the three regimes, which we denote by Cost(NB), Cost(CN), and Cost(DCN), respectively.

We define the price of anarchy (PoA) as the relative cost reduction from the no-battery default

of the centralized versus decentralized battery:

PoA ≡ Cost(NB)− Cost(CN)

Cost(NB)− Cost(DCN)
. (PoA)

While not obvious, having an independent battery always yields a cost reduction relative to the

no-battery default (cf. Theorem 4). Given this, (PoA) is well-defined, and PoA ≥ 1.

The PoA metric captures the fact that there is a part of the generation cost that is “unavoidable”

in the sense that even the centrally controlled battery cannot avoid it. Therefore, the PoA is defined

to compare the relative cost reduction relative to the no-battery benchmark, which is the status

quo before the introduction of battery.

Throughout this subsection (and later analyses comparing costs), we will assume the following.

Assumption 1. Let Xt = Dt − µt be the centered net demand. Then (Xt)
T
t=1 follows an MA(1)
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process in the following sense. We can write X1 = ϵ1 and Xt = ϵt + θϵt−1 for 2 ≤ t ≤ T where

ϵt ∼ N (0, σ2
t ) are independent normal variables for 1 ≤ t ≤ T , and θ is a constant.

Assumption 1 captures the demand randomness and positive correlation across time periods

in a tractable way. There is a baseline mean demand µt. The noise terms Xt are allowed to be

correlated, but only across nearby time periods. This is the simplest model of dynamic random

demand that goes beyond independent random noise that still allows us to derive analytical insights.

Later, we will see that our insights continue to hold across very general correlation structures.

Theorem 4 (Cost Comparisons). If Assumption 1 holds, then

(a) Cost(NB) ≥ Cost(DCN) and Cost(DCN) ≥ Cost(CN). Both inequalities become equalities if

and only if µ1 = µ2 and σ1 = ρσ2.

(b) 9/8 ≤ PoA ≤ 4/3. The lower bound is achieved when kf = 1 and σ1 = ρσ2. The upper

bound is achieved when kf = 0. PoA is decreasing in |µ1 − µ2|, increasing in |σ1 − ρσ2|, and

decreasing in kf .

The result that Cost(NB) ≥ Cost(DCN) is in the spirit of Sioshansi [2014], while Cost(DCN) ≥

Cost(CN) is necessarily true by definition. Taken together, these cost comparisons show that the

three costs are ranked, so the PoA metric is well-defined and meaningful. We also derive a lower

bound of 9/8 and an upper bound of 4/3 on PoA, and both bounds are the best possible. In other

words, the incentive misalignment can increase the generation cost from 12.5% to 33.3% relative

to the no-battery benchmark. Both bounds are attainable and are independent of the market

parameters. On the one hand, the existence of an absolute lower bound strictly away from 1 means

that in any market, there is always incentive misalignment (increasing cost by at least 12.5%). On

the other hand, the existence of an absolute upper bound of 4/3 also shows that in any market, the

incentive misalignment can be at most 33.3%, and this is even we assume the starkest conditions to

make battery market power starkest: there is a single monopoly battery that is perfectly efficient.

In §9, we show that PoA remains bounded even after relaxing assumptions.

The bounds and comparative statics of PoA follow from the following argument. The cost

reductions of both centralized and decentralized regimes have two components: the contribution
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from the differences in means, and from the differences in variance, as shown by

Cost(NB)− Cost(CN) = β
1

4
(µ1 − µ2)

2 +
β

4kf
(σ1 − ρσ2)

2

Cost(NB)− Cost(DCN) = β
(12− 5kf + k2f )

4(4− kf )2
(µ1 − µ2)

2 +
3β

16kf
(σ1 − ρσ2)

2

The variance component of the two cost gaps are always a factor of 4/3 from each other, whereas

the mean component of the two cost gaps are a factor of
12−5kf+k2f
(4−kf )2

from each other. This factor

reaches a minimum of 9/8 at kf = 1 and a maximum of 4/3 at kf = 0. Therefore, the ratio

PoA is between 9/8 and 4/3. Because the mean factor component is less than the variance factor

component of 4/3, if |µ1 − µ2| increases, the mean component becomes more important and the

PoA decreases, whereas if |σ1 − ρσ2| increases, the variance component becomes more important

and PoA decreases. Lastly, because the mean factor is decreasing in kf , the ratio PoA is also

decreasing in kf .

Because PoA is decreasing in |µ1−µ2|, as renewable energy (especially solar) increases, widening

the gap between peak mean net demand µ1 and off-peak mean net demand µ2, incentive alignment

improves! A more severe duck curve increases the cost gaps of both centralized and decentralized

regimes, but the decentralized cost reduction grows at a faster rate. Moreover, the fact that PoA

is decreasing in kf means that more fast generators improve incentive alignment. Intuitively, this

is because non-strategic fast generators are ready to “step in” and cushion the price impact of

real-time battery withholding. Lastly, because PoA is increasing in |σ1 − ρσ2|, it is not necessarily

monotonic in the correlation ρ. On the one hand, if σ1 ≤ σ2 then PoA is always increasing in ρ.

On the other hand, if σ1 ≥ σ2 then PoA is decreasing in ρ when ρ ≤ σ1/σ2 and increasing in ρ

when ρ ≥ σ1/σ2.

7 Numerical Illustrations

In this section, we illustrate the battery behavior and incentive misalignment numerically. To

anchor ideas, and for illustration purposes, we use data from Los Angeles and Houston. We choose

these regions as examples of markets that are well on the way in terms of renewable and battery

adoption, and markets that are in transition, respectively. We also observe local monopoly effects

in these regions. For example, in Los Angeles, as of April 2024, AES is the biggest player with 4
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batteries with total capacity of 355 MW, the second biggest is VESI with two batteries, 20 MW

each, and the rest are very small batteries with total capacity 27.2 MW [EIA, 2024a].

We emphasize that the results we present here are illustrative of the forces at play, but also do

not account for how submarkets are connected in the electricity market. A full network analysis is

beyond the scope of the current work.
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Figure 3: Mean net demand for each hour of the day in 2023 in Los Angeles and Houston, and the
corresponding peak and off-peak hours.

We calibrate the supply curve parameters α, β from public market data. We estimate kf from

the share of energy produced from “fast” sources. If we assume that natural gas and hydro are

fast, while nuclear and coal are slow, then we have kf = 0.93 for Los Angeles and kf = 0.66 for

Houston.

In contrast to the generator parameters α, β, kf which can be assumed to be constant through-

out the year, the net demand has a significant seasonality component. We assume that the peak

and off-peak net demands are jointly normal, and calibrate the marginal means µ1, µ2, marginal

variances σ2
1, σ

2
2, and the correlation ρ for each quarter of 2023. For Los Angeles, we take the peak

hour to be 19:00-20:00 and the off-peak hour to be 12:00-13:00. For Houston, we take the peak

hour to be 19:00-20:00 and the off-peak hour to be 09:00-10:00 (cf. Figure 3).

For each quarter, we calculate the price of anarchy. In Los Angeles, we have 1.15 for all four

quarters. In Houston, we have Q1: 1.26, Q2: 1.24, Q3: 1.22, Q4: 1.26 with an average of 1.25.

Therefore, even though the demand has high seasonality, the price of anarchy is fairly stable across
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seasons.

We can see that, if the battery achieves local monopoly in a region, the price of anarchy as well

as all three types of distortion are practically significant. Nevertheless, the low values of the PoA

shows that the impact on cost reduction is limited. The Los Angeles PoA of 1.15 (resp. Houston

PoA of 1.25) means that the cost reduction from having decentralized batteries is already 87%

(resp. 80%) of the best possible cost reduction. We should think of the best possible cost reduction

not necessarily as the benchmark that could be achieved if only the central planner takes total

control because in practice, the central planner also do not have perfect information and is not

necessarily as nimble as private actors. Rather than viewing this result as saying that we could

do even better with a benevolent monopoly in charge, we should view this result instead as saying

that the liberalized electricity market status quo can give reasonable performance.

8 Competition and Market Power Mitigation Mechanisms

So far, we have assumed that there is a single battery monopoly which operates without restrictions

to highlight the fundamental features of battery market power. In this section, we will analyze the

equilibrium of a game with n competing batteries and shows that competition is quite effective

at reducing strategic distortions. However, we will show that a few reasonable-sounding market

mitigation measures that the system operator might deploy can backfire.

8.1 Competition

Theorem 5. Consider n batteries deciding discharge quantities in each period in a Cournot equi-

librium. Then, there is a unique equilibrium given by

zDA
1 =

(n+ 1− kf )

2((n+ 1)2 − nkf )
(µ1 − µ2)

zRT
1 (D1) =

kf
2((n+ 1)2 − nkf )

(µ1 − µ2) +
(D1 − µ1)−

(
µ2|D1

− µ2

)
2(n+ 1)

For every market, we have the PoA bounds

1 +
1

n(n+ 1)(n2 + n+ 2)
≤ PoA ≤ 1 +

1

n(n+ 2)
.
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Note that Theorem 5 reduces to the decentralized monopoly case (Theorem 3) with n = 1. We

can quantify the three types of distortions by comparing the total discharge in equilibrium n(z1)DCN

with the socially optimal discharge (z1)CN which is the same as the one-battery case (because the

battery has no capacity constraint). They are: quantity withholding = (n+1−nkf )/((n+1)2−nkf ),

shift from day-ahead to real-time = kf/(n+ 1), reduction in real-time responsiveness = 1/(n+ 1).

In particular, the three types of distortions all go to zero at a rate of 1/n as n increases.

Meanwhile, the PoA bounds show that PoA decreases to 1 at a rate of 1/n2 in the worst case. So just

a moderate amount of competition can substantially reduce distortions and incentive misalignment.

The caveat that competition also substantially reduces battery profit, which might deter battery

market entry.

8.2 Market Power Mitigation Mechanisms

8.2.1 Regulating Day-Ahead versus Real-Time Discrepancy

Out of the three types of distortions that we have identified in our model, the shift from day-

ahead to real-time is easiest to observe in the data. California’s special report on battery storage

[CAISO, 2023b] shows the hourly average battery bids and market prices in day-ahead and real-

time (Figure 4 and Figure 5 in Appendix E). In day-ahead, battery bids are significantly higher

than market clearing prices, whereas in real-time, battery bids are comparable to market clearing

prices. This means that batteries avoid being scheduled in day-ahead, preferring to be scheduled in

real-time instead. This corresponds to the shift from day-ahead to real-time that we have identified.

We consider two market policies that the regulator could enact to mitigate the day-ahead versus

real-time discrepancy:

(P1) The regulator can require that the battery discharges zero in expectation in real-time. This

policy basically “bans” the shift from DA to RT, which is observable. Equivalently, this policy

imitates the socially optimal (centralized) behavior.

(P2) The regulator can introduce virtual bidders, which are purely financial bidders that arbitrage

between day-ahead and real-time prices in each period, using market dynamics.

Unfortunately, both of these policies will backfire.
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Theorem 6. Both (P1) and (P2) lead to more quantity withholding, lower battery profit, and higher

system cost.

Intuitively, the monopoly battery splits the exercise of market power “optimally” between quan-

tity withholding and shift from DA to RT. If the regulator bans shift from DA to RT, the battery

will have to do more quantity withholding to compensate. Whereas the shift from DA to RT will

still make the battery capacity available (only later than optimal), quantity withholding will make

the battery capacity not available at all, which further increases system cost. This also lowers

battery profit because the profit-maximizing battery would not choose this quantity withholding

allocation without the external constraint.

8.2.2 Battery Discharge Subsidy

If we think the charge and discharge behavior of batteries gives positive externalities to the system,

we can subsidize battery discharge, analogous to renewable production tax credits for renewables

but for batteries. The regulator selects a subsidy price s such that the regulator pays sz if the

battery discharges z during peak period.

Theorem 7. For any subsidy level s > 0, total financial cost, defined as a sum of subsidy cost and

system generation cost, increases compared to no subsidy.

We note that even though subsidy increases total financial cost, it might still be a good policy

if having lower carbon emissions is desirable in its own right, e.g., via the social cost of carbon.

9 Extensions

So far, we have made assumptions to get the most parsimonious model that shows the main

economic and operational drivers of strategic battery behavior. In this section, we will show that

the main insights continue to hold in more complex settings.

9.1 Multiple Time Periods

In this subsection, we extend our results to T ≥ 2 periods, indexed by t ∈ {1, . . . , T} ≡ [T ].

The demands of all periods are random variables drawn from a known joint distribution D ≡
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(D1, . . . , DT ) ∼ π. As before, we consider the centralized case where the battery minimizes gener-

ation cost, and the decentralized case where the battery maximizes its profit. The battery decides

the discharge quantities zDA
t for each period t in day-ahead, and zRT

t (D1:t) for each period t in

real-time as a function of the realized history D1:t subject to
∑

t z
DA
t = 0 and

∑
t z

RT
t (D1:t) = 0

for all D. The market prices are determined by (1) and (2), and the generation cost is also given

by (3) (but summing over all t ∈ [T ]), and the price of anarchy is defined by (PoA) as before.

Theorem 9 in Appendix F gives explicit formulas for the centralized and decentralized battery

decisions zDA
t and zRT

t (D1:t). This theorem reduces to previous results with T = 2. We can see

from the explicit formulas that the three types of distortions (quantity withholding, shift from day-

ahead to real-time, reduction in real-time responsiveness) continue to hold with the same amount

as in (8), (9), (10). We can prove that the bounds 9/8 ≤ PoA ≤ 4/3 on the Price of Anarchy also

continue to hold for independent normal demand for every T , and we believe that the bounds will

hold more broadly under reasonable assumptions on the correlation matrix.

9.2 Battery Inefficiency

In this subsection, we are back to the two-period model, but we now assume that the battery is

not perfectly efficient. Rather, it has a round trip efficiency of η ∈ (0, 1]. That is, the energy the

battery discharges is η times the amount it charges. In practice, η is typically between 0.85 and

0.98 for lithium-ion batteries [Koohi-Fayegh and Rosen, 2020]. If we assume that period 1 is a peak

period and the battery charges, while period 2 is an off-peak period and the battery discharges,

then we have zDA
1 + ηzDA

2 = zRT
1 + ηzRT

2 = 0. Theorem 10 in Appendix F gives explicit formulas

for centralized and decentralized battery decisions. We also have the bounds 9/8 ≤ PoA ≤ 4/3 as

before.

9.3 Non-Parallel Supply Curves

We have assumed that the same fraction kf of generators are fast at every price λ, that is Gs(λ) =

ksG(λ) and Gf (λ) = kfG(λ) and the supply curve is linear: G−1(x) = α + βx. We now relax the

former assumption and assume that the fast and slow supply curves are linear but not necessarily

a multiple of each other: G−1
s (x) = αs + βsx and G−1

f (x) = αf + βfx. Theorem 11 shows that we

can still characterize the battery strategies in closed form, and the bounds 9/8 ≤ PoA ≤ 4/3 still

30



hold.

9.4 Convex Supply Curves

We have assumed that the total supply curve is linear: G−1(x) = α+βx. This is a good first-order

approximation for most hours in the market, but we might want to also take into account that

prices might increase super-linearly when the demand is unusually high. Here, we assume that

G−1(x) = α + βx + γx2 for γ ≥ 0. Theorem 12 derives the centralized and decentralized battery

strategies as linearized convexity corrections in γ.

9.5 Battery Capacity

We have assumed that the battery has unlimited capacity, so the only constraints are that the total

net discharge is zero. Now we assume that the monopoly battery has a given capacity C. We do

not have closed form solutions, but they can be numerically approximated. Figure 6 shows the

Price of Anarchy values, calibrated with Los Angeles and Houston data, are comparable to before.

9.6 Battery Investments and Operations

Given our model’s focus on daily cycles of the market, taking market participants as fixed, it

naturally fits with the system operator ’s goal of ensuring proper market functioning. However, it

can also be used to understand higher-level decisions such as investment in battery capacity. Here,

we assume that the battery capacity is endogenous. There is an investment cost cinv per unit of

battery capacity. The decision maker first decides the battery capacity C to invest in, then decides

zDA
1 , zRT

1 (D1) to operate the battery with this capacity. The centralized case minimizes total cost,

which is a sum of investment cost cinvC and generation cost. The decentralized case maximizes

net profit, which is the arbitrage profit minus investment cost. Figure 7 shows that the Price of

Anarchy values, calibrated with Los Angeles and Houston data, are comparable to before.

10 Conclusion

We formulate and solve an analytical model of market power of batteries in electricity markets.

We find that profit-maximizing batteries strategically distort their decisions by quantity withhold-

ing, shifting participation from day-ahead to real-time, and reducing real-time responsiveness, and
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quantify the extent of each form of distortion. The larger the share of fast generators, the more

batteries do shift to real-time rather than quantity withholding, and vice versa. Battery distortion

due to incentive misalignment leads to an increase in generation cost between 12.5% and 33.3%,

and the misalignment is largest in relative terms when generators are slow, and and the duck curve

is shallow. Numerical illustrations with Los Angeles and Houston data suggest that, if a battery

achieves local monopoly, these effects could be practically significant, but the loss from market

power is bounded even in the worst case. A moderate amount of competition is very effective at

reducing distortions, with the caveat that it also substantially reduces battery profits, which might

deter battery market entry. However, market power mitigation mechanisms can backfire. While

our base model is intentionally parsimonious to most clearly highlight the main drivers of battery

incentive misalignment, the insights and quantitative bounds continue in more general settings.

There are many avenues for future work. Our model considers each region separately, which can

be a good first-order approximation for highly fragmented markets. For moderately fragmented

markets, the network structure and locational marginal pricing market clearing should be modeled

explicitly, and the question of market power over a network is worth investigating. Our model also

assumes that the environment is probabilistically known. Arguably, however, battery behavior is

also partly shaped by uncertainty and robustness considerations. For example, if the market price

occasionally spikes, then part of battery withholding behavior might simply be contingency prepa-

ration rather than market power. Understanding the role of price and system forecast, Bayesian and

non-Bayesian uncertainty, and distinguishing between strategic behavior and standard operating

procedures is an important future direction.
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A Proofs for Section 3

Proposition 1. We have

E[(µ2|D1
− µ2)

2] = ρ2sσ
2
2

E[σ2
2|D1

] = (1− ρ2s)σ
2
2

E[D2 − µ2|D1
] = 0

E[(D2 − µ2|D1
)(D1 − µ1)] = 0

E[(D2 − µ2|D1
)(D2 − µ2)] = (1− ρ2s)σ

2
2

E[(D1 − µ1)(µ2|D1
− µ2)] = ρσ1σ2

E[(D2 − µ2)(µ2|D1
− µ2)] = ρ2sσ

2
2

Also, for each constant c, we have

E[(D2 − c)2|d1] = σ2
2|d1 + (µ2|d1 − c)2

Proof. Proof of Proposition 1. The first two equations hold by definition of ρs. For the third

equation, bE[D2 − µ2|D1
] = E[E[D2 − µ2|D1

|D1]] = E[µ2|D1
− µ2|D1

] = 0. For the fourth equation,

E[(D2−µ2|D1
)(D1−µ1)] = E[E[(D2−µ2|D1

)(D1−µ1)|D1]] = E[(D1−µ1)(µ2|D1
−µ2|D1

)] = 0. For

the fifth equation,

E[(D2 − µ2|D1
)(D2 − µ2)] = E[(D2 − µ2|D1

)2] + E[(D2 − µ2|D1
)(µ2|D1

− µ2)]

= E[E[(D2 − µ2|D1
)2|D1]] + E[E[(D2 − µ2|D1

)(µ2|D1
− µ2)|D1]]

= E[σ2
2|D1

] + E[(µ2|D1
− µ2|D1

)(µ2|D1
− µ2)]

= (1− ρ2s)σ
2
2 + 0 = (1− ρ2s)σ

2
2

For the sixth equation, E[(D1 − µ1)(µ2|D1
− µ2)] = E[E[(D1 − µ1)(D2 − µ2)|D1]] = E[(D1 −

µ1)(D2−µ2)] = ρσ1σ2. For the seventh equation, E[(D2−µ2)(µ2|D1
−µ2)] = E[E[(D2−µ2)(µ2|D1

−

µ2)|D1]] = E[(µ2|D1
− µ2)

2] = ρ2sσ
2
2
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Lastly, we have

E[(D2 − c)2|d1] = E[(D2 − µ2|d1 + µ2|d1 − c)2|d1]

= E[(D2 − µ2|d1)
2|d1] + (µ2|d1 − c)2 + 2(µ2|d1 − c)E[(D2 − µ2|d1 |d1]

= σ2
2|d1 + (µ2|d1 − c)2 + 2(µ2|d1 − c) · 0

= σ2
2|d1 + (µ2|d1 − c)2

Proof. Proof of Theorem 1.

For t ∈ {1, 2}, we compute

E[(d̃RT
t )] = E

[
µt +

Dt − µt

kf

]
= µt

E[(d̃RT
t )2] = E

[(
µt +

Dt − µt

kf

)2
]
= µ2

t +
2µt

kf
E[(Dt − µt)] +

1

k2f
E[(Dt − µt)

2] = µ2
t +

σ2
t

k2f

Therefore, the generation cost is

2∑
t=1

ks

[
αµt +

β

2
µ2
t

]
+ kf

[
αµt +

β

2

(
µ2
t +

σ2
t

k2f

)]

which simplifies to the given expression.
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B Proofs for Section 4

Proof of Theorem 2. We want to minimize generation cost. The generation cost is

T∑
t=1

[
(1− kf )

(
α(µt − zDA

t ) +
β

2
(µt − zDA

t )2
)

+kfE

[
α

(
µt − zDA

t +
Dt − µt − zRT

t

kf

)
+

β

2

(
µt − zDA

t +
Dt − µt − zRT

t

kf

)2
] ]

= αT µ̄+
β

2

{
(1− kf )

T−1∑
t=1

(µt − zDA
t )2 + (1− kf )

(
µT +

T−1∑
t=1

zDA
t

)2

+kf

T−1∑
t=1

E
(
µt − zDA

t +
Dt − µt − zRT

t

kf

)2

+ kfE

(
µT +

T−1∑
t=1

zDA
t +

DT − µT +
∑T−1

t=1 zRT
t

kf

)2}

Therefore, we want to minimize the expression in {· · ·}.

We note that the generation cost is strictly convex (quadratic) in the decision variables. So,

the global minimum is achieved where first-order conditions hold with equality.

Fix 1 ≤ t ≤ T − 1. For each i, t ≤ i ≤ T − 1, take the derivative with respect to zRT
i (d1:i) and

take expectation over D(t+1):i (so the equation depends only on d1:t gives

kf (µT − µi)− (µi|d1:t − µi) + (µT |d1:t − µT ) + kfz
DA
i + kf

T−1∑
t′=1

zDA
t′ +

t−1∑
t′=1

zRT
t′ +

T−1∑
t′=t

(1 + 1(t = i))E[zRT
t′ |d1:t] = 0

(11)

where µi|d1:t = dt for i = t, and E[zRT
t′ |d1:t] = zRT

t (d1:t) for t
′ = t.

We will first solve for the DA variables. So we will take expectation of (16) for i = t over D1:t

to get

kf

T∑
t′=1

zDA
t′ + E[zRT

t ] +
T−1∑
t′=1

E[zRT
t′ ] = 0

Because this holds for every t, and only E[zRT
t ] depends on t in the above equation, we get that
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E[zRT
t ] must be equal for every t: E[zRT

t ] = E[zRT
1 ] and

kf

T∑
t′=1

zDA
t′ + TE[zRT

1 ] = 0

We now take the derivative with respect to zDA
t :

−2(1− kf )(µt − zDA
t ) + (1− kf )(2)

(
µT +

T−1∑
t′=1

zDA
t′

)

+kf (2)

(
− 1

kf

)
E
(
µt − zDA

t +
Dt − µt − zRT

t

kf

)
+ kf

(
2

kf

)
E

(
µT +

T−1∑
t′=1

zDA
t′ +

DT − µT +
∑T−1

t′=1 z
RT
t′

kf

)

Replacing E[zRT
t ] = E[zRT

1 ], we get

2(2− kf )

(
µT − µt + zDA

t +
T−1∑
t′=1

zDA
t′

)
+

2

kf
TE[zRT

1 ] = 0

This holds for every t. So there is a constant c such that zDA
t = µt − µT + c This gives

2(2− kf )T (c+ µ̄− µT ) +
2T

kf
E[zRT

1 ] = 0 and 0 = kf

T∑
t′=1

zDA
t′ + TE[zRT

1 ] = kfT (µ̄− µT + c) + TE[zRT
1 ]

Therefore, E[zRT
1 ] = 0 and c = µT − µ̄, so zDA

t = µt − µ̄

Now we solve for zRT
t (d1:t).

Substituting zDA
t = µt − µ̄ in (16) gives

−(µi|d1:t − µi) + (µT |d1:t − µT ) +
t−1∑
t′=1

zRT
t′ +

T−1∑
t′=t

(1 + 1(t = i))E[zRT
t′ |d1:t] = 0 (12)

Summing (17) over all t ≤ i ≤ T − 1 gives

−
T−1∑
i=t

(µi|d1:t − µi) + (T − t)(µT |d1:t − µT ) + (T − t)
t−1∑
t′=1

zRT
t′ + (T − t+ 1)

T−1∑
t′=t

E[zRT
t′ |d1:t] = 0

This gives
∑T−1

t′=t E[zRT
t′ |d1:t] in terms of zRT

t′ , t′ ≤ t− 1. We substitute this into (17) with i = t:
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−(dt − µt) + (µT |d1:t − µT ) +
t−1∑
t′=1

zRT
t′ + zRT

t +
T−1∑
t′=t

E[zRT
t′ |d1:t] = 0

(T − t+ 1)

(
−(dt − µt) + (µT |d1:t − µT ) +

t−1∑
t′=1

zRT
t′ + zRT

t

)

= −
T−1∑
i=t

(µi|d1:t − µi) + (T − t)(µT |d1:t − µT ) + (T − t)
t−1∑
t′=1

zRT
t′

−(T − t)(dt − µt) +
T−1∑
i=t+1

(µi|d1:t − µi) + (µT |d1:t − µT ) +
t−1∑
t′=1

zRT
t′ + (T − t+ 1)zRT

t = 0

This recursion has the form

(T − t+ 1)zRT
t +

t−1∑
t′=1

zRT
t′ = at

with

at = (T − t)(dt − µt)−
T∑

i=t+1

(µi|d1:t − µi)

This gives TzRT
1 = a1 so zRT

1 = a1/T and

(T − t)zRT
t+1 − (T − t+ 1)zRT

t + zRT
t = at+1 − at

zRT
t+1 − zRT

t =
1

(T − t)
(at+1 − at)

zRT
t =

a1
T

+
t−1∑
t′=1

1

(T − t′)
(at′+1 − at′) =

1

(T − t+ 1)
at −

t−1∑
t′=1

1

(T − t′)(T − t′ + 1)
at′

=
1

(T − t+ 1)

(
(T − t)(dt − µt)−

T∑
i=t+1

(µi|d1:t − µi)

)

−
t−1∑
t′=1

1

(T − t′)(T − t′ + 1)

(
(T − t′)(dt′ − µt′)−

T∑
i=t′+1

(µi|d1:t′ − µi)

)
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Therefore

zRT
t =

(T − t)

(T − t+ 1)
(dt − µt)−

t−1∑
t′=1

1

(T − t′ + 1)
(dt′ − µt′)−

1

(T − t+ 1)

T∑
i=t+1

(µi|d1:t − µi)

+
t=1∑
t′=1

T∑
i=t′+1

1

(T − t′)(T − t′ + 1)
(µi|d1:t′ − µi)

C Proofs for Section 5

Proof of Theorem 3. We now solve the decentralized case. The battery profit is

Π =

T∑
t=1

λDA
t zDA

t + E

[
T∑
t=1

λRT
t zRT

t

]

=

T−1∑
t=1

(λDA
t − λDA

T )zDA
t + E

[
T−1∑
t=1

(λRT
t − λRT

T )zRT
t

]

= β

T−1∑
t=1

µt − µT − 2zDA
t −

∑
k ̸=t

zDA
k

 zDA
t + β

T−1∑
t=1

E

µt − µT − 2zDA
t −

∑
k ̸=t

zDA
k +

(Dt − µt)− (DT − µT )− 2zRT
t −

∑
k ̸=t z

RT
k

kf

 zRT
t


For a given k, consider the derivative of the profit w.r.t zRT

k (d1:k). We get

∑
t̸=k

(
− 1

kf

)
E[zRT

t |d1:k] +
(
µk − µT − 2zDA

k −
∑
t̸=k

zDA
t

+
1

kf

(
(dk − µk)− (µT |d1:k − µT )−

∑
t̸=k

E[zRT
t |d1:k]− 4zRT

k (d1:k)
))

= 0

where, of course, if t ≤ k, then E[zRT
t |d1:k] = zRT

t (d1:t).

or

+kf

µk − µT − 2zDA
k −

∑
t̸=k

zDA
t

+ (dk − µk)− (µT |d1:k − µT )− 2
∑
t̸=k

E[zRT
t ]− 4zRT

k = 0

We will first take the expectations to eliminate all randomness (and solve for the DA variables

44



first):

We have

Π

β
=
∑
t

µt − µT − 2zDA
t −

∑
t′ ̸=t

zDA
t′

 zDA
t

+
∑
t

E

µt − µT − 2zDA
t −

∑
t′ ̸=t

zDA
t′ +

(Dt − µt)− (DT − µT )− 2zRT
t −

∑
t′ ̸=t z

RT
t′

kf

 zRT
t


Derivative w.r.t. zRT

k (d1:k) gives

E

[∑
t′ ̸=k

(
− 1

kf

)
zRT
t′ +

µk − µT − 2zDA
k −

∑
t′ ̸=k

zDA
t′ +

(Dk − µk)− (DT − µT )− 4zRT
k −

∑
t′ ̸=k z

RT
t′

kf

∣∣∣∣∣d1:k
]

or

kf (µk − µT )− kfz
DA
k − kf

∑
t

zDA
t − 2

∑
t

E[zRT
t |d1:k]− 2zRT

k + (dk − µk)− (µT |d1:k − µT ) = 0

(Without further specification,
∑

t means sum over t = 1, . . . , T − 1.) Of course, when t ≤ k, we

have E[zRT
t |d1:k] = zRT

t (d1:t).

We will use this equation later to solve for individual zRT
k (d1:k). For now, we take the expectation

over all randomness to get

kf (µk − µT )− kfz
DA
k − kf

∑
t

zDA
t − 2

∑
t

E[zRT
t ]− 2E[zRT

k ] = 0

We want to calculate
∑

t E[zRT
t ]. Summing the above for all k ∈ [T − 1] gives

kf
∑
t

(µt − µT )− kfT
∑
t

zDA
t − 2T

∑
t

E[zRT
t ] = 0

So

∑
t

E[zRT
t ] = −

kf
2

∑
t

zDA
t +

kf
2T

∑
t

(µt − µT )
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Substituting this back in gives

E[zRT
k ] = −

kf
2
zDA
k +

kf
2
(µk − µT )−

kf
2T

∑
t

(µt − µT )

Now take the derivative w.r.t. zDA
k :

∑
t̸=k

(−1)zDA
t +

µk − µT − 4zDA
k −

∑
t′ ̸=k

zDA
t′

+
∑
t̸=k

(−1)E[zRT
t ] + (−2)E[zRT

k ] = 0

or

−2zDA
k − 2

∑
t

zDA
t + (µk − µT )− E[zRT

k ]−
∑
t

E[zRT
t ] = 0

Substituting the value of E[zRT
k ] and

∑
t E[zRT

t ] gives

zDA
k = −

∑
t

zDA
t +

(2− kf )

(4− kf )
(µk − µT )

Summing over k ∈ [T − 1] gives

∑
t

zDA
t =

(2− kf )

(4− kf )

1

T

∑
t

(µt − µT )

Therefore,

zDA
k =

(2− kf )

(4− kf )

(
(µk − µT )−

1

T

∑
t

(µt − µT )

)
=

(2− kf )

(4− kf )
(µk − µ̄)

where µ̄ = (µ1 + · · ·+ µT−1 + µT )/T . Substituting this into the E[zRT
k ] expression gives

E[zRT
k ] =

kf
(4− kf )

(
(µk − µT )−

1

T

∑
t

(µt − µT )

)
=

kf
(4− kf )

(µk − µ̄)

Now we will solve for each zRT
k .
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Recall

kf (µk − µT )− kfz
DA
k − kf

∑
t

zDA
t − 2

∑
t

E[zRT
t |d1:k]− 2zRT

k + (dk − µk)− (µT |d1:k − µT ) = 0

Substituting the zDA
k expression gives

2kf
(4− kf )

(µk − µT )− 2
k−1∑
t=1

zRT
t (d1:t)− 4zRT

k (d1:k)− 2
T−1∑

t=k+1

E[zRT
t |d1:k] + (dk − µk)− (µT |d1:k − µT ) = 0

(13)

This equation will be used a lot: (18)

Fix a t, 1 ≤ t ≤ T − 1. We will solve for zRT
t (d1:t) in terms of d1:t.

The equation with k = t is

2kf
(4− kf )

(µt − µT )− 2
t−1∑
t′=1

zRT
t′ − 4zRT

t − 2
T−1∑

t′=t+1

E[zRT
t′ |d1:t] + (dt − µt)− (µT |d1:t − µT ) = 0

Now take the equation with t + 1 ≤ k ≤ T − 1 and take expectation over D(t+1):k (so the

equation depends only on d1:t:

2kf
(4− kf )

(µk − µT )− 2
t−1∑
t′=1

zRT
t′ − 2zRT

t − 2
T−1∑

t′=t+1

(1 + 1(t′ = k))E[zRT
t′ |d1:t] + (µk|d1:t − µk)− (µT |d1:t − µT ) = 0

Summing these equations for all t ≤ k ≤ T − 1 gives

2kf
(4− kf )

T−1∑
k=t

(µk − µT )− 2(T − t)
t−1∑
t′=1

zRT
t′ − 2(T − t+ 1)

T−1∑
t′=t

E[zRT
t′ |d1:t]− (T − t)(µT |d1:t − µT )

+(dt − µt) +

T−1∑
k=t+1

(µk|d1:t − µk) = 0

47



Therefore,

T−1∑
t′=t

E[zRT
t′ |d1:t] =

kf
(T − t+ 1)(4− kf )

T−1∑
k=t

(µk − µT )−
(T − t)

(T − t+ 1)

t−1∑
t′=1

zRT
t′

− (T − t)

2(T − t+ 1)
(µT |d1:t − µT ) +

1

2(T − t+ 1)
(dt − µt) +

1

2(T − t+ 1)

T−1∑
k=t+1

(µk|d1:t − µk)

The equation with k = t says:

2kf
(4− kf )

(µt − µT )− 2
t−1∑
t′=1

zRT
t′ − 2zRT

t − 2
T−1∑
t′=t

E[zRT
t′ |d1:t] + (dt − µt)− (µT |d1:t − µT ) = 0

Solving for zRT
t gives

zRT
t =

kf
(4− kf )

(µt − µT )−
t−1∑
t′=1

zRT
t′ −

T−1∑
t′=t

E[zRT
t′ |d1:t] +

1

2
(dt − µt)−

1

2
(µT |d1:t − µT )

Substituting the expression for
∑T−1

t′=t E[zRT
t′ |d1:t] gives

zRT
t =

kf
(4− kf )

(
µt −

1

(T − t+ 1)

T∑
k=t

µk

)
− 1

T − t+ 1

t−1∑
t′=1

zRT
t′ +

(T − t)

2(T − t+ 1)
(dt − µt)

− 1

2(T − t+ 1)
(µT |d1:t − µT )−

1

2(T − t+ 1)

T−1∑
k=t+1

(µk|d1:t − µk)

This gives a recursion that gives zRT
t in terms of zRT

t′ for 1 ≤ t′ ≤ t− 1. The recursion has the

form

zRT
t = at −

1

(T − t+ 1)

t−1∑
t′=1

zRT
t′
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This gives

(T − t+ 1)zRT
t = (T − t+ 1)at −

t−1∑
t′=1

zRT
t′

(T − t)zRT
t+1 − (T − t+ 1)zRT

t = (T − t)at+1 − (T − 1 + t)at − zRT
t

zRT
t+1 − zRT

t = at+1 − at −
1

(T − t)
at

Summing these equations from 1 to t− 1 gives

zRT
t − zRT

1 = at − a1 −
t−1∑
t′=1

1

(T − t′)
at′

We also have zRT
1 = a1, so

zRT
t = at −

t−1∑
t′=1

1

(T − t′)
at′

Note that we have

at =
kf

(4− kf )

(
µt −

1

(T − t+ 1)

T∑
k=t

µk

)
+

(T − t)

2(T − t+ 1)
(dt − µt)−

1

2(T − t+ 1)

T∑
k=t+1

(µk|d1:t − µk)

We have

zRT
1 = a1

=
kf

(4− kf )
(µ1 − µ̄) +

(T − 1)

2T
(d1 − µ1)−

1

2T

T∑
k=2

(µk|d1 − µk)
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and

zRT
2 = a1 −

1

(T − 1)
zRT
1

=
kf

(4− kf )

(
µ2 −

1

(T − 1)

T∑
k=2

µk

)
+

(T − 2)

2(T − 1)
(d2 − µ2)−

1

2(T − 1)

T∑
k=3

(µk|d1:2 − µk)

− 1

(T − 1)

(
kf

(4− kf )
(µ1 − µ̄) +

(T − 1)

2T
(d1 − µ1)−

1

2T

T∑
k=2

(µk|d1 − µk)

)

=
kf

(4− kf )
(µ2 − µ̄) +

(T − 2)

2(T − 1)
(d2 − µ2)−

1

2(T − 1)

T∑
k=3

(µk|d1:2 − µk)−
1

2T
(d1 − µ1) +

1

2T (T − 1)

T∑
k=2

(µk|d1 − µk)

We substitute the expressions of at and at′ in the zRT
t expression. The “constant” term is

kf/(4− kf ) times

µt −
1

(T − t+ 1)

(
T µ̄−

t−1∑
k=1

µk

)

−
t−1∑
t′=1

1

(T − t′)

(
µt′ −

1

(T − t′ + 1)

(
T µ̄−

t′−1∑
k=1

µk

))

= µt +

(
− T

(T − t+ 1)
+

t−1∑
t′=1

T

(T − t′)(T − t′ + 1)

)
µ̄

+
1

(T − t+ 1)

t−1∑
k=1

µk −
t−1∑
t′=1

1

(T − t′)
µt′ −

t−1∑
t′=1

t′−1∑
k=1

1

(T − t′)(T − t′ + 1)
µk

The coefficient of µ̄ is

− T

(T − t+ 1)
+

t−1∑
t′=1

(
T

T − t′
− T

T − t′ + 1

)
= − T

(T − t+ 1)
+

(
T

T − t+ 1
− T

T

)
= −1

We swap the order of the double summation (over t′ and k, to over k and t′) to get

t−1∑
k=1

t−1∑
t′=k+1

(
1

(T − t′)
− 1

(T − t′ + 1)

)
µk =

t−1∑
k=1

(
1

T − t+ 1
− 1

T − k

)
µk
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Therefore, all the terms cancel out to µt − µ̄ and the constant term is

kf
(4− kf )

(µt − µ̄)

The rest of zRT
t is

(T − t)

2(T − t+ 1)
(dt − µt)−

1

2(T − t+ 1)

T∑
k=t+1

(µk|d1:t − µk)

−
t−1∑
t′=1

1

(T − t′)

(
(T − t′)

2(T − t′ + 1)
(dt′ − µt′)−

1

2(T − t′ + 1)

T∑
k=t′+1

(µk|d1:t′ − µk)

)

Therefore, we have

zRT
t (d1:t) =

kf
(4− kf )

(µt − µ̄) +
(T − t)

2(T − t+ 1)
(dt − µt)−

t−1∑
t′=1

1

2(T − t′ + 1)
(dt′ − µt′)

− 1

2(T − t+ 1)

T∑
k=t+1

(µk|d1:t − µk) +
t−1∑
t′=1

T∑
k=t′+1

1

2(T − t′)(T − t′ + 1)
(µk|d1:t′ − µk)

D Proofs for Section 6

To compare costs between regimes, we first derive the expressions for generation costs under cen-

tralized and decentralized regimes, assuming Assumption 1. The results are given in Proposition 2

and Proposition 3 below.

Proposition 2. If Assumption 1 holds, then

Cost(CN) = stuff

Proposition 3. If Assumption 1 holds, then

Cost(DCN) = stuff
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Lemma 1. If Assumption 1 holds, then for i > t, we have

E[Xs|X1, . . . , Xt] =


0 if s > t+ 1

θ
σ2
t

σ2
t+θ2σ2

t−1
if s = t+ 1

Proof of Lemma 1. Let {ϵt}Tt=1 be independent with ϵt ∼ N (0, σ2
t ), and define the process:

X1 = ϵ1,

Xt = ϵt + θϵt−1, t = 2, . . . , T.

We compute the conditional expectation E[Xs | X1, . . . , Xt] for s > t.

Case 1: s ≥ t+ 2.

Since Xs = ϵs + θϵs−1, and both ϵs and ϵs−1 are independent of {X1, . . . , Xt}, we have:

E[Xs | X1, . . . , Xt] = 0.

Case 2: s = t+ 1.

Then:

Xt+1 = ϵt+1 + θϵt,

where ϵt+1 ⊥ {X1, . . . , Xt}, so

E[Xt+1 | X1, . . . , Xt] = θ · E[ϵt | X1, . . . , Xt].

We now compute E[ϵt | X1, . . . , Xt]. Since only Xt depends on ϵt directly (and all ϵ’s are

independent), we have:

E[ϵt | X1, . . . , Xt] = E[ϵt | Xt].

Now, Xt = ϵt + θϵt−1, where ϵt ∼ N (0, σ2
t ) and ϵt−1 ∼ N (0, σ2

t−1) are independent. Therefore,

the conditional expectation of ϵt given Xt is:

E[ϵt | Xt] =
Cov(ϵt, Xt)

Var(Xt)
Xt =

σ2
t

σ2
t + θ2σ2

t−1

Xt.

52



Proof. We first calculate zDA,CN
t and zRT,CN

t We have zDA,CN
t = µt − µ̄ for 1 ≤ t ≤ T . Now, for

1 ≤ t ≤ T − 1,

zRT,CN
t =

(T − t)

(T − t+ 1)
(Dt − µt)−

t−1∑
t′=1

1

(T − t′ + 1)
(Dt′ − µt′)

− 1

(T − t+ 1)

T∑
i=t+1

(µi|D1:t
− µi) +

t−1∑
t′=1

T∑
i=t′+1

1

(T − t′)(T − t′ + 1)
(µi|D1:t′

− µi)

=
(T − t)

(T − t+ 1)
Xt −

t−1∑
t′=1

1

(T − t′ + 1)
Xt′

− 1

(T − t+ 1)
· θ · σ2

t

σ2
t + θ2σ2

t−1

Xt

+
t−1∑
t′=1

1

(T − t′)(T − t′ + 1)
· θ ·

σ2
t′

σ2
t′ + θ2σ2

t′−1

Xt′

Therefore,

Xt − zRT,CN
t =

1

(T − t+ 1)

(
1 + θ

σ2
t

σ2
t + θ2σ2

t−1

)
Xt

+

t−1∑
t′=1

(
1

(T − t′ + 1)
+

1

(T − t′)(T − t′ + 1)
θ

σ2
t′

σ2
t′ + θ2σ2

t′−1

)
Xt′

=

t∑
t′=1

(
1

(T − t′ + 1)
+

1

(T − t′)(T − t′ + 1)
θ2

σ2
t′

σ2
t′ + θ2σ2

t′−1

)
Xt′

Using the convention that ϵ0 = 0 and σ0 = 0, we calculate

t∑
t′=1

1

(T − t′ + 1)
Xt′ =

t∑
t′=1

1

(T − t′ + 1)
ϵt′ + θ

t∑
t′=1

1

(T − t′ + 1)
ϵt′−1

=

t∑
t′=1

1

(T − t′ + 1)
ϵt′ + θ

t−1∑
t′=1

1

(T − t′)
ϵt′ =

1

(T − t+ 1)
ϵt +

t−1∑
t′=1

(
1

(T − t′ + 1)
+

θ

(T − t′)

)
ϵt′

53



and

t∑
t′=1

(
1

(T − t′)(T − t′ + 1)
θ

σ2
t′

σ2
t′ + θ2σ2

t′−1

)
Xt′

=
1

(T − 1)T
θϵ1 +

t∑
t′=2

1

(T − t′)(T − t′ + 1)
θ

σ2
t′

σ2
t′ + θ2σ2

t′−1

ϵt′ +
t−1∑
t′=1

1

(T − t′ − 1)(T − t′)
θ2

σ2
t′+1

σ2
t′+1 + θ2σ2

t′
ϵt′

=
t∑

t′=1

1

(T − t′)(T − t′ + 1)
θ

σ2
t′

σ2
t′ + θ2σ2

t′−1

ϵt′ +
t−1∑
t′=1

1

(T − t′ − 1)(T − t′)
θ2

σ2
t′+1

σ2
t′+1 + θ2σ2

t′
ϵt′

=
1

(T − t)(T − t+ 1)
θ

σ2
t

σ2
t + θ2σ2

t−1

ϵt

+

t−1∑
t′=1

(
1

(T − t′)(T − t′ + 1)
θ

σ2
t′

σ2
t′ + θ2σ2

t′−1

+
1

(T − t′ − 1)(T − t′)
θ2

σ2
t′+1

σ2
t′+1 + θ2σ2

t′

)
ϵt′

Therefore, for 1 ≤ t ≤ T − 1

Xt − zRT,CN
t

=

(
1

(T − t+ 1)
+

1

(T − t)(T − t+ 1)
θ

σ2
t

σ2
t + θσ2

t−1

)
ϵt

+

t−1∑
t′=1

(
1

(T − t′ + 1)
+

θ

(T − t′)
+

1

(T − t′)(T − t′ + 1)
θ

σ2
t′

σ2
t′ + θσ2

t′−1

+
1

(T − t′ − 1)(T − t′)
θ2

σ2
t′+1

σ2
t′+1 + θσ2

t′

)
ϵt′

Now we calculate DCN.

zDA
t =

(2− kf )

(4− kf )
(µt − µ̄)

zRT
t (D1:t) =

kf
(4− kf )

(µt − µ̄) +
(T − t)

2(T − t+ 1)
(Dt − µt)−

t−1∑
t′=1

1

2(T − t′ + 1)
(Dt′ − µt′)

− 1

2(T − t+ 1)

T∑
i=t+1

(µi|D1:t
− µi) +

t−1∑
t′=1

T∑
i=t′+1

1

2(T − t′)(T − t′ + 1)
(µi|D1:t′

− µi)

Before we prove these propositions, we have a few lemmas for key calculations.

First, the zRT
t expressions involve many conditional expectations of the form E[Di|D1:t] with

i > t, which Lemma 1 calculates in closed form.
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E Proofs for Section 8

Figure 4: Day-Ahead discharge bid ≫ price (avoid DA scheduling)

Figure 5: Real-time discharge bid ≈ price (batteries suddenly show up in RT)

Proof. Proof of Theorem 5.
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Assume that there are n batteries indexed by b ∈ [n] ≡ {1, 2, . . . , n}. Assume that battery b

discharges zDA
b,t in day-ahead in time t ∈ {1, 2} and zRT

b,1 (D1) in real-time in time 1, and zRT
b,2 (D1, D2)

in RT in time 2, with zDA
b,1 + zDA

b,2 = zRT
b,1 (D1) + zRT

b,2 (D1, D2) = 0.

We have

d̃DA
1 = µ1 −

∑
b

zDA
b,1

d̃DA
2 = µ2 +

∑
b

zDA
b,1

d̃RT
1 (d1) = µ1 −

∑
b

zDA
b,1 +

1

kf

(
d1 − µ1 −

∑
b

zRT
b,1 (d1)

)

d̃RT
2 (d1, d2) = µ2 +

∑
b

zDA
b,1 +

1

kf

(
d2 − µ2 +

∑
b

zRT
b,1 (d1)

)

and

λDA
1 = α+ βd̃DA

1

λDA
2 = α+ βd̃DA

2

λRT
1 = α+ βd̃RT

1

λRT
2 = α+ βd̃RT

2

Battery b’s profit is given by

Πb = (λDA
1 − λDA

2 )zDA
b,1 + E[(λRT

1 − λRT
2 )zRT

b,1 (D1)]

We can write

Πb = β

(
µ1 − µ2 − 2

∑
b

zDA
b,1

)
zDA
b,1

+ E

[
β

{
µ1 − µ2 − 2

∑
b

zDA
b,1 +

1

kf

(
(D1 − µ1)− (D2 − µ2)− 2

∑
b

zRT
b,1 (D1)

)}
zRT
b,1 (D1)

]
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Fix D1 = d1. We take derivative w.r.t. zRT
1 (d1) to get

E

[
β

{
µ1 − µ2 − 2

∑
b

zDA
b,1 +

1

kf

(
(d1 − µ1)− (D2 − µ2)− 2

∑
b′ ̸=b

zRT
b′,1(d1)− 4zRT

b,1 (d1)
)}∣∣∣∣∣D1 = d1

]
= 0

or

k2f

(
µ1 − µ2 − 2

∑
b

zDA
b,1

)
+ kf

(
(d1 − µ1)− (µ2|d1 − µ2)− 2

∑
b′ ̸=b

zRT
b′,1(d1)− 4zRT

b,1 (d1)
)
= 0 (14)

We take derivative w.r.t zDA
b,1 to get

µ1 − µ2 − 2
∑
b′ ̸=b

zDA
b′,1 − 4zDA

b,1

+ E

[
{−2}zRT

b,1 (D1)

]
= 0 (15)

We will assume that the equilibrium is symmetric. (We can show directly that any equilibrium

is symmetric, because the main terms are determined by linear equations with a unique solution

which we will derive below.)

The main term of (14) is

kf (µ1 − µ2 − 2nzDA
b,1 ) + (d1 − µ1)− (µ2|d1 − µ2)− (2n+ 2)zRT

b,1 (d1) = 0

or

zRT
b,1 (d1) =

1

2(n+ 1)

(
kf (µ1 − µ2)− 2kfnz

DA
b,1 + (d1 − µ1)− (µ2|d1 − µ2)

)
The main term of (15) is

µ1 − µ2 − (2n+ 2)zDA
b,1 − 2E[zRT

b,1 (D1)] = 0

From the expression for zRT
b,1 (d1), we have

E[zRT
b,1 (D1)] =

1

2(n+ 1)

(
kf (µ1 − µ2)− 2kfnz

DA
b,1

)
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Substituting this in gives

µ1 − µ2 − (2n+ 2)zDA
b,1 − 2 · 1

2(n+ 1)

(
kf (µ1 − µ2)− 2kfnz

DA
b,1

)
= 0

or

zDA
b,1 =

(n+ 1− kf )

2((n+ 1)2 − nkf )
(µ1 − µ2)

which gives

zRT
b,1 (d1) =

kf
2((n+ 1)2 − nkf )

(µ1 − µ2) +
1

2(n+ 1)
(d1 − µ1)−

1

2(n+ 1)
(µ2|d1 − µ2)

We now compute the generation cost. The generation cost is given by

α(µ1 + µ2) + ks
β

2

[
(d̃DA

1 )2 + (d̃DA
2 )2

]
+ kf

β

2
E
[
(d̃RT

1 )2 + (d̃RT
2 )2

]
which evaluates to

α(µ1 + µ2)

+ β

{
(2 + 6n+ 7n2 + 4n3 + n4 − (4n+ 5n2 + 2n3)kf + n2k2f )

4((n+ 1)2 − nkf )2
(µ2

1 + µ2
2)

+
n(2 + 5n+ 4n2 + n3 − (3n+ 2n2)kf + nk2f )

2((n+ 1)2 − nkf )2
µ1µ2

+
(2 + 2n+ n2)σ2

1 + (2 + 4n+ 2n2 − (2n+ n2)ρ2s)σ
2
2 + 2n(2 + n)ρσ1σ2

4(n+ 1)2kf

}

This gives

Cost(NB)− Cost(CN) = β
1

4
(µ1 − µ2)

2 +
β

4kf
(σ1 − ρσ2)

2

Cost(NB)− Cost(DCN) = β
(n(2 + 5n+ 4n2 + n3)− n2(3 + 2n)kf + n2k2f )

4((n+ 1)2 − nkf )2
(µ1 − µ2)

2 +
n(n+ 2)β

4(n+ 1)2kf
(σ1 − ρσ2)

2
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Therefore,

1 +
1

n(n+ 1)(n2 + n+ 2)
=

(n2 + n+ 1)2

n(n+ 1)(n2 + n+ 2)
≤ PoA ≤ (n+ 1)2

n(n+ 2)
= 1 +

1

n(n+ 2)
.

Proof. Proof of Theorem 6. We first consider (P1). We want to maximize profit with the extra

constraint that E[zRT
1 ] = 0.

The profit is

Π = (λDA
1 − λDA

2 )zDA
1 + E

[
(λRT

1 − λRT
2 )zRT

1 (D1)
]
+ θE

[
zRT
1

]
= β(µ1 − µ2 − 2zDA

1 )zDA
1

+ E
[
β

(
µ1 − µ2 − 2zDA

1 +
((D1 − µ1)− (D2 − µ2)− 2zRT

1 (D1))

kf

)
zRT
1 (D1)

]

We can ignore the factor of β in maximizing profit.

We can write the Lagrangian

L = (µ1 − µ2 − 2zDA
1 )zDA

1

+ E
[(

µ1 − µ2 − 2zDA
1 +

((D1 − µ1)− (D2 − µ2)− 2zRT
1 (D1))

kf

)
zRT
1 (D1)

]
+ θE

[
zRT
1

]
Taking derivative w.r.t. zRT

1 (d1) for a given fixed d1 gives, for each d1,

ED2∼π(·|d1)

[(
µ1 − µ2 − 2zDA

1 +
((d1 − µ1)− (D2 − µ2)− 4zRT

1 (d1))

kf

)]
+ θ = 0

This reduces to

zRT
1 (d1) =

1

4
kfθ +

1

4
(d1 − µ1)−

1

4
(µ2|d1 − µ2) +

kf
4
(µ1 − µ2 − 2zDA

1 )

In particular,

E[zRT
1 (D1)] =

1

4
kfθ +

kf
4
(µ1 − µ2 − 2z̄DA

1 )
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This should be zero. Therefore,

θ = −(µ1 − µ2 − 2zDA
1 )

Now we take derivative w.r.t zDA
1 :

(µ1 − µ2 − 4zDA
1 ) + E

[
(−2)zRT

1 (D1)
]
= 0

Because E[zRT
1 ] = 0, we have

z̄DA
1 =

1

4
(µ1 − µ2)

z̄RT
1 (d1) =

1

4
(d1 − µ1)−

1

4
(µ2|d1 − µ2)

Now we compute the generation cost. The demands are given by

dDA
1 = µ1 − zDA

1 =
3

4
µ1 +

1

4
µ2

dDA
2 = µ2 + zDA

1 =
1

4
µ1 +

3

4
µ2

dRT
1 =

3

4
(d1 − µ1) +

1

4
(µ2|d1 − µ2)

dRT
2 = (d2 − µ2) +

1

4
(d1 − µ1)−

1

4
(µ2|d1 − µ2)

We calculate the modified real-time demand

d̃RT
1 = dDA

1 +
dRT
1

kf
=

3

4kf
(d1 − µ1) +

1

4kf
(µ2|d1 − µ2) +

3

4
µ1 +

1

4
µ2

d̃RT
2 = dDA

2 +
dRT
2

kf
=

1

kf
(d2 − µ2) +

1

4kf
(d1 − µ1)−

1

4kf
(µ2|d1 − µ2) +

1

4
µ1 +

3

4
µ2
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We calculate, using Proposition 1:

E[(d̃RT
1 )2] = E

(
3

4kf
(D1 − µ1) +

1

4kf
(µ2|D1

− µ2) +
3

4
µ1 +

1

4
µ2

)2

=
9σ2

1 + ρ2sσ
2
2 + 6ρσ1σ2

16k2f
+

(
3

4
µ1 +

1

4
µ2

)2

E[(d̃RT
2 )2] = E

(
4(D2 − µ2) + (D1 − µ1)− (µ2|D1

− µ2)

4kf
+

1

4
µ1 +

3

4
µ2

)2

=
σ2
1 + (16− 7ρ2s)σ

2
2 + 6ρσ1σ2

16k2f
+

(
1

4
µ1 +

3

4
µ2

)2

The generation cost is

α(µ1 + µ2) + ks

[
β

2

[
(dDA

1 )2 + (dDA
2 )2

] ]
+ kfE

[
β

2

[
(d̃RT

1 )2 + (d̃RT
2 )2

] ]

which simplifies to

Cost(DCN-Reg) = α(µ1 + µ2) + β

[
5µ2

1 + 6µ1µ2 + 5µ2
2

16
+

5σ2
1 + (8− 3ρ2s)σ

2
2 + 6ρσ1σ2

16kf

]

Here, DCN-Reg means decentralized but “regulated”.

We can compute

Cost(DCN-Reg)− Cost(DCN) = β
kf (4 + kf )

16(4− kf )2
(µ1 − µ2)

2 ≥ 0

so Cost(DCN-Reg) ≥ Cost(DCN). So this regulation (requiring that the battery discharges zero in

expectation in real time) always increases cost!

Under this regulation, the three types of distortions are

quantity withholding =
1

2

shift from DA to RT = 0

reduction in RT responsiveness =
1

2

So the reduction in RT responsiveness is the same. The quantity withholding is worse, and the shift
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from DA to RT is better (obviously! because it is designed specifically to combat this). So stamping

down on withholding of the second kind (shift from DA to RT) means spillover to withholding of

the first kind (quantity withholding). As we have seen above, the net effect on the system is to

increase cost. And the battery profit decreases by definition (profit under constrained maximization

is lower than profit under unconstrained maximization).

Now we consider (P2). This is a consequence of a more general theorem, Theorem 8, that

characterizes the equilibrium with any number of batteries and virtual bidders.

Theorem 8 (Battery Competition and Virtual Bidders). Let there be B batteries and V virtual

bidders in a Cournot competition. Then each battery b’s DA and RT discharges in period 1 are

zDA
b,1 =

(B + V + 1)− (V + 1)kf
2((B + V + 1)(B + 1)−Bkf )

(µ1 − µ2)

zRT
b,1 (D1) =

(D1 − µ1)− (µ2|D1
− µ2)

2(B + 1)
+

(V + 1)kf
2((B + V + 1)(B + 1)−Bkf )

(µ1 − µ2)

Each virtual bidder v’s discharges in period 1 are

yv,1 =
Bkf

2((B + V + 1)(B + 1)−Bkf )
(µ1 − µ2)

The generation cost is

(B2 + 2B + 2)(B + V + 1)2 +B2k2f −B(2B2 + 5B + 4 + 2(B + 2)V )kf

4((B + V + 1)(B + 1)−Bkf )
2 µ2 +

1

4kf

(
1 +

1

(B + 1)2

)
σ2

Proof. Proof of Theorem 7.

Π = β(µ1 − µ2 − 2zDA
1 )zDA

1

+ E
[
β

(
µ1 − µ2 − 2zDA

1 +
((D1 − µ1)− (D2 − µ2)− 2zRT

1 (D1))

kf

)
zRT
1 (D1)

]
+ s

(
zDA
1 + E[zRT

1 ]
)
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Taking derivative w.r.t. zRT
1 (d1) for a given fixed d1 gives, for each d1,

βED2∼π(·|d1)

[(
µ1 − µ2 − 2zDA

1 +
((d1 − µ1)− (D2 − µ2)− 4zRT

1 (d1))

kf

)]
+ s = 0

This reduces to

zRT
1 (d1) =

kfs

4β
+

1

4
(d1 − µ1)−

1

4
(µ2|d1 − µ2) +

kf
4
(µ1 − µ2 − 2zDA

1 )

In particular,

E[zRT
1 (D1)] =

kfs

4β
+

kf
4
(µ1 − µ2 − 2zDA

1 )

Now we take derivative w.r.t zDA
1 :

β(µ1 − µ2 − 4zDA
1 ) + βE

[
(−2)zRT

1 (D1)
]
+ s = 0

Substituting the expression for E[zRT
1 ], we have

zDA
1 =

(2− kf )

2(4− kf )
(µ1 − µ2)−

kfs

2(4− kf )β

zRT
1 (d1) =

1

4
(d1 − µ1)−

1

4
(µ2|d1 − µ2) +

kf
2(4− kf )

(µ1 − µ2) +
kfs

(4− kf )β

Note that with positive s, the battery does LESS quantity withholding and MORE shift from

day-ahead to real-time. This is a good sign.

The total discharge is

zDA
1 + E[zRT

1 ] =
1

4− kf
(µ1 − µ2) +

kfs

2(4− kf )β

Now we compute the generation cost.
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Now we compute the generation cost. The demands are given by

dDA
1 = µ1 − zDA

1 =
kfs

2(4− kf )β
+

(6− kf )

2(4− kf )
µ1 +

(2− kf )

2(4− kf )
µ2

dDA
2 = µ2 + zDA

1 = −
kfs

2(4− kf )β
+

(2− kf )

2(4− kf )
µ1 +

(6− kf )

2(4− kf )
µ2

dRT
1 = −

kfs

(4− kf )β
−

kf
2(4− kf )

(µ1 − µ2) +
3

4
(d1 − µ1) +

1

4
(µ2|d1 − µ2)

dRT
2 =

kfs

(4− kf )β
+

kf
2(4− kf )

(µ1 − µ2) + (d2 − µ2) +
1

4
(d1 − µ1)−

1

4
(µ2|d1 − µ2)

We calculate the modified real-time demand

d̃RT
1 = dDA

1 +
dRT
1

kf
=

3

4kf
(d1 − µ1) +

1

4kf
(µ2|d1 − µ2) +

(5− kf )

2(4− kf )
µ1 +

(3− kf )

2(4− kf )
µ2 −

(2− kf )

2(4− kf )

s

β

d̃RT
2 = dDA

2 +
dRT
2

kf
=

1

kf
(d2 − µ2) +

1

4kf
(d1 − µ1)−

1

4kf
(µ2|d1 − µ2) +

(3− kf )

2(4− kf )
µ1 +

(5− kf )

2(4− kf )
µ2 +

(2− kf )

2(4− kf )

s

β

We calculate, using Proposition 1:

E[(d̃RT
1 )2] = E

(
3

4kf
(D1 − µ1) +

1

4kf
(µ2|D1

− µ2) +
(5− kf )

2(4− kf )
µ1 +

(3− kf )

2(4− kf )
µ2 −

(2− kf )

2(4− kf )

s

β

)2

=
9σ2

1 + ρ2sσ
2
2 + 6ρσ1σ2

16k2f
+

(
(5− kf )

2(4− kf )
µ1 +

(3− kf )

2(4− kf )
µ2 −

(2− kf )

2(4− kf )

s

β

)2

E[(d̃RT
2 )2] = E

(
4(D2 − µ2) + (D1 − µ1)− (µ2|D1

− µ2)

4kf
+

(3− kf )

2(4− kf )
µ1 +

(5− kf )

2(4− kf )
µ2 +

(2− kf )

2(4− kf )

s

β

)2

=
σ2
1 + (16− 7ρ2s)σ

2
2 + 6ρσ1σ2

16k2f
+

(
(3− kf )

2(4− kf )
µ1 +

(5− kf )

2(4− kf )
µ2 +

(2− kf )

2(4− kf )

s

β

)2

The total cost (generation cost plus subsidy cost) is

Cost(DCN-s) ≡ α(µ1 + µ2) + ks

[
β

2

[
(dDA

1 )2 + (dDA
2 )2

] ]
+ kfE

[
β

2

[
(d̃RT

1 )2 + (d̃RT
2 )2

] ]
+ s

(
µ1 − µ2

4− kf
+

kf
2(4− kf )

s

β

)

We can then calculate

Cost(DCN-s)− Cost(DCN-0) =
(2− kf )(4 + kf )

2(4− kf )2
(µ1 − µ2)s+

(12− 5kf )kf
4(4− kf )2β

s2 ≥ 0

So for s ≥ 0, Cost(DCN-s) is minimized at s = 0.
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F Proofs for Section 9

Theorem 9 (Multiple Time Periods). For each t′ < t, define D1:t ≡ (D1, D2, . . . , Dt), µt ≡ E[Dt],

µ̄ = (µ1 + · · ·+ µT )/T , and µt|d1:t′ = E[Dt|D1:t′ = d1:t′ ].

The centralized battery discharge decisions are given by, for each period t,

zDA
t = µt − µ̄

zRT
t (D1:t) =

(T − t)

(T − t+ 1)
(Dt − µt)−

t−1∑
t′=1

1

(T − t′ + 1)
(Dt′ − µt′)

− 1

(T − t+ 1)

T∑
i=t+1

(µi|D1:t
− µi) +

t−1∑
t′=1

T∑
i=t′+1

1

(T − t′)(T − t′ + 1)
(µi|D1:t′

− µi)

The decentralized battery discharge decisions are given by, for each period t,

zDA
t =

(2− kf )

(4− kf )
(µt − µ̄)

zRT
t (D1:t) =

kf
(4− kf )

(µt − µ̄) +
(T − t)

2(T − t+ 1)
(Dt − µt)−

t−1∑
t′=1

1

2(T − t′ + 1)
(Dt′ − µt′)

− 1

2(T − t+ 1)

T∑
i=t+1

(µi|D1:t
− µi) +

t−1∑
t′=1

T∑
i=t′+1

1

2(T − t′)(T − t′ + 1)
(µi|D1:t′

− µi)

If we further assume that each Dt is normal and independent, the bounds 9/8 ≤ PoA ≤ 4/3 always

hold.

Remark. Even though Theorem 9 proves the bounds 9/8 ≤ PoA ≤ 4/3 only in the special

case when (D1, . . . , DT ) are independent and normal, we conjecture that the same bound still

holds under a reasonable assumption on the covariance matrix, such as when each two periods are

positively correlated: Cov(Dt1 , Dt2) ≥ 0 for each t1, t2.

Proof of Theorem 9. We first solve the centralized case.
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We want to minimize generation cost. The generation cost is

T∑
t=1

[
(1− kf )

(
α(µt − zDA

t ) +
β

2
(µt − zDA

t )2
)

+kfE

[
α

(
µt − zDA

t +
Dt − µt − zRT

t

kf

)
+

β

2

(
µt − zDA

t +
Dt − µt − zRT

t

kf

)2
] ]

= αT µ̄+
β

2

{
(1− kf )

T−1∑
t=1

(µt − zDA
t )2 + (1− kf )

(
µT +

T−1∑
t=1

zDA
t

)2

+kf

T−1∑
t=1

E
(
µt − zDA

t +
Dt − µt − zRT

t

kf

)2

+ kfE

(
µT +

T−1∑
t=1

zDA
t +

DT − µT +
∑T−1

t=1 zRT
t

kf

)2}

Therefore, we want to minimize the expression in {· · ·}.

Fix 1 ≤ t ≤ T − 1. For each i, t ≤ i ≤ T − 1, take the derivative with respect to zRT
i (d1:i) and

take expectation over D(t+1):i (so the equation depends only on d1:t gives

kf (µT − µi)− (µi|d1:t − µi) + (µT |d1:t − µT ) + kfz
DA
i + kf

T−1∑
t′=1

zDA
t′ +

t−1∑
t′=1

zRT
t′ +

T−1∑
t′=t

(1 + 1(t = i))E[zRT
t′ |d1:t] = 0

(16)

where µi|d1:t = dt for i = t, and E[zRT
t′ |d1:t] = zRT

t (d1:t) for t
′ = t.

We will first solve for the DA variables. So we will take expectation of (16) for i = t over D1:t

to get

kf

T∑
t′=1

zDA
t′ + E[zRT

t ] +
T−1∑
t′=1

E[zRT
t′ ] = 0

Because this holds for every t, and only E[zRT
t ] depends on t in the above equation, we get that

E[zRT
t ] must be equal for every t: E[zRT

t ] = E[zRT
1 ] and

kf

T∑
t′=1

zDA
t′ + TE[zRT

1 ] = 0
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We now take the derivative with respect to zDA
t :

−2(1− kf )(µt − zDA
t ) + (1− kf )(2)

(
µT +

T−1∑
t′=1

zDA
t′

)

+kf (2)

(
− 1

kf

)
E
(
µt − zDA

t +
Dt − µt − zRT

t

kf

)
+ kf

(
2

kf

)
E

(
µT +

T−1∑
t′=1

zDA
t′ +

DT − µT +
∑T−1

t′=1 z
RT
t′

kf

)

Replacing E[zRT
t ] = E[zRT

1 ], we get

2(2− kf )

(
µT − µt + zDA

t +
T−1∑
t′=1

zDA
t′

)
+

2

kf
TE[zRT

1 ] = 0

This holds for every t. So there is a constant c such that zDA
t = µt − µT + c This gives

2(2− kf )T (c+ µ̄− µT ) +
2T

kf
E[zRT

1 ] = 0 and 0 = kf

T∑
t′=1

zDA
t′ + TE[zRT

1 ] = kfT (µ̄− µT + c) + TE[zRT
1 ]

Therefore, E[zRT
1 ] = 0 and c = µT − µ̄, so zDA

t = µt − µ̄

Now we solve for zRT
t (d1:t).

Substituting zDA
t = µt − µ̄ in (16) gives

−(µi|d1:t − µi) + (µT |d1:t − µT ) +
t−1∑
t′=1

zRT
t′ +

T−1∑
t′=t

(1 + 1(t = i))E[zRT
t′ |d1:t] = 0 (17)

Summing (17) over all t ≤ i ≤ T − 1 gives

−
T−1∑
i=t

(µi|d1:t − µi) + (T − t)(µT |d1:t − µT ) + (T − t)
t−1∑
t′=1

zRT
t′ + (T − t+ 1)

T−1∑
t′=t

E[zRT
t′ |d1:t] = 0

This gives
∑T−1

t′=t E[zRT
t′ |d1:t] in terms of zRT

t′ , t′ ≤ t− 1. We substitute this into (17) with i = t:

−(dt − µt) + (µT |d1:t − µT ) +
t−1∑
t′=1

zRT
t′ + zRT

t +
T−1∑
t′=t

E[zRT
t′ |d1:t] = 0
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(T − t+ 1)

(
−(dt − µt) + (µT |d1:t − µT ) +

t−1∑
t′=1

zRT
t′ + zRT

t

)

= −
T−1∑
i=t

(µi|d1:t − µi) + (T − t)(µT |d1:t − µT ) + (T − t)
t−1∑
t′=1

zRT
t′

−(T − t)(dt − µt) +
T−1∑
i=t+1

(µi|d1:t − µi) + (µT |d1:t − µT ) +
t−1∑
t′=1

zRT
t′ + (T − t+ 1)zRT

t = 0

This recursion has the form

(T − t+ 1)zRT
t +

t−1∑
t′=1

zRT
t′ = at

with

at = (T − t)(dt − µt)−
T∑

i=t+1

(µi|d1:t − µi)

This gives TzRT
1 = a1 so zRT

1 = a1/T and

(T − t)zRT
t+1 − (T − t+ 1)zRT

t + zRT
t = at+1 − at

zRT
t+1 − zRT

t =
1

(T − t)
(at+1 − at)

zRT
t =

a1
T

+

t−1∑
t′=1

1

(T − t′)
(at′+1 − at′) =

1

(T − t+ 1)
at −

t−1∑
t′=1

1

(T − t′)(T − t′ + 1)
at′

=
1

(T − t+ 1)

(
(T − t)(dt − µt)−

T∑
i=t+1

(µi|d1:t − µi)

)

−
t−1∑
t′=1

1

(T − t′)(T − t′ + 1)

(
(T − t′)(dt′ − µt′)−

T∑
i=t′+1

(µi|d1:t′ − µi)

)
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Therefore

zRT
t =

(T − t)

(T − t+ 1)
(dt − µt)−

t−1∑
t′=1

1

(T − t′ + 1)
(dt′ − µt′)−

1

(T − t+ 1)

T∑
i=t+1

(µi|d1:t − µi)

+
t=1∑
t′=1

T∑
i=t′+1

1

(T − t′)(T − t′ + 1)
(µi|d1:t′ − µi)

We now solve the decentralized case. The battery profit is

Π =
T∑
t=1

λDA
t zDA

t + E

[
T∑
t=1

λRT
t zRT

t

]

=
T−1∑
t=1

(λDA
t − λDA

T )zDA
t + E

[
T−1∑
t=1

(λRT
t − λRT

T )zRT
t

]

= β

T−1∑
t=1

µt − µT − 2zDA
t −

∑
k ̸=t

zDA
k

 zDA
t + β

T−1∑
t=1

E

µt − µT − 2zDA
t −

∑
k ̸=t

zDA
k +

(Dt − µt)− (DT − µT )− 2zRT
t −

∑
k ̸=t z

RT
k

kf

 zRT
t


For a given k, consider the derivative of the profit w.r.t zRT

k (d1:k). We get

∑
t̸=k

(
− 1

kf

)
E[zRT

t |d1:k] +
(
µk − µT − 2zDA

k −
∑
t̸=k

zDA
t

+
1

kf

(
(dk − µk)− (µT |d1:k − µT )−

∑
t̸=k

E[zRT
t |d1:k]− 4zRT

k (d1:k)
))

= 0

where, of course, if t ≤ k, then E[zRT
t |d1:k] = zRT

t (d1:t).

or

+kf

µk − µT − 2zDA
k −

∑
t̸=k

zDA
t

+ (dk − µk)− (µT |d1:k − µT )− 2
∑
t̸=k

E[zRT
t ]− 4zRT

k = 0

We will first take the expectations to eliminate all randomness (and solve for the DA variables

first):
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We have

Π

β
=
∑
t

µt − µT − 2zDA
t −

∑
t′ ̸=t

zDA
t′

 zDA
t

+
∑
t

E

µt − µT − 2zDA
t −

∑
t′ ̸=t

zDA
t′ +

(Dt − µt)− (DT − µT )− 2zRT
t −

∑
t′ ̸=t z

RT
t′

kf

 zRT
t


Derivative w.r.t. zRT

k (d1:k) gives

E

[∑
t′ ̸=k

(
− 1

kf

)
zRT
t′ +

µk − µT − 2zDA
k −

∑
t′ ̸=k

zDA
t′ +

(Dk − µk)− (DT − µT )− 4zRT
k −

∑
t′ ̸=k z

RT
t′

kf

∣∣∣∣∣d1:k
]

or

kf (µk − µT )− kfz
DA
k − kf

∑
t

zDA
t − 2

∑
t

E[zRT
t |d1:k]− 2zRT

k + (dk − µk)− (µT |d1:k − µT ) = 0

(Without further specification,
∑

t means sum over t = 1, . . . , T − 1.) Of course, when t ≤ k, we

have E[zRT
t |d1:k] = zRT

t (d1:t).

We will use this equation later to solve for individual zRT
k (d1:k). For now, we take the expectation

over all randomness to get

kf (µk − µT )− kfz
DA
k − kf

∑
t

zDA
t − 2

∑
t

E[zRT
t ]− 2E[zRT

k ] = 0

We want to calculate
∑

t E[zRT
t ]. Summing the above for all k ∈ [T − 1] gives

kf
∑
t

(µt − µT )− kfT
∑
t

zDA
t − 2T

∑
t

E[zRT
t ] = 0

So

∑
t

E[zRT
t ] = −

kf
2

∑
t

zDA
t +

kf
2T

∑
t

(µt − µT )
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Substituting this back in gives

E[zRT
k ] = −

kf
2
zDA
k +

kf
2
(µk − µT )−

kf
2T

∑
t

(µt − µT )

Now take the derivative w.r.t. zDA
k :

∑
t̸=k

(−1)zDA
t +

µk − µT − 4zDA
k −

∑
t′ ̸=k

zDA
t′

+
∑
t̸=k

(−1)E[zRT
t ] + (−2)E[zRT

k ] = 0

or

−2zDA
k − 2

∑
t

zDA
t + (µk − µT )− E[zRT

k ]−
∑
t

E[zRT
t ] = 0

Substituting the value of E[zRT
k ] and

∑
t E[zRT

t ] gives

zDA
k = −

∑
t

zDA
t +

(2− kf )

(4− kf )
(µk − µT )

Summing over k ∈ [T − 1] gives

∑
t

zDA
t =

(2− kf )

(4− kf )

1

T

∑
t

(µt − µT )

Therefore,

zDA
k =

(2− kf )

(4− kf )

(
(µk − µT )−

1

T

∑
t

(µt − µT )

)
=

(2− kf )

(4− kf )
(µk − µ̄)

where µ̄ = (µ1 + · · ·+ µT−1 + µT )/T . Substituting this into the E[zRT
k ] expression gives

E[zRT
k ] =

kf
(4− kf )

(
(µk − µT )−

1

T

∑
t

(µt − µT )

)
=

kf
(4− kf )

(µk − µ̄)

Now we will solve for each zRT
k .
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Recall

kf (µk − µT )− kfz
DA
k − kf

∑
t

zDA
t − 2

∑
t

E[zRT
t |d1:k]− 2zRT

k + (dk − µk)− (µT |d1:k − µT ) = 0

Substituting the zDA
k expression gives

2kf
(4− kf )

(µk − µT )− 2
k−1∑
t=1

zRT
t (d1:t)− 4zRT

k (d1:k)− 2
T−1∑

t=k+1

E[zRT
t |d1:k] + (dk − µk)− (µT |d1:k − µT ) = 0

(18)

This equation will be used a lot: (18)

Fix a t, 1 ≤ t ≤ T − 1. We will solve for zRT
t (d1:t) in terms of d1:t.

The equation with k = t is

2kf
(4− kf )

(µt − µT )− 2
t−1∑
t′=1

zRT
t′ − 4zRT

t − 2
T−1∑

t′=t+1

E[zRT
t′ |d1:t] + (dt − µt)− (µT |d1:t − µT ) = 0

Now take the equation with t + 1 ≤ k ≤ T − 1 and take expectation over D(t+1):k (so the

equation depends only on d1:t:

2kf
(4− kf )

(µk − µT )− 2
t−1∑
t′=1

zRT
t′ − 2zRT

t − 2
T−1∑

t′=t+1

(1 + 1(t′ = k))E[zRT
t′ |d1:t] + (µk|d1:t − µk)− (µT |d1:t − µT ) = 0

Summing these equations for all t ≤ k ≤ T − 1 gives

2kf
(4− kf )

T−1∑
k=t

(µk − µT )− 2(T − t)
t−1∑
t′=1

zRT
t′ − 2(T − t+ 1)

T−1∑
t′=t

E[zRT
t′ |d1:t]− (T − t)(µT |d1:t − µT )

+(dt − µt) +

T−1∑
k=t+1

(µk|d1:t − µk) = 0
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Therefore,

T−1∑
t′=t

E[zRT
t′ |d1:t] =

kf
(T − t+ 1)(4− kf )

T−1∑
k=t

(µk − µT )−
(T − t)

(T − t+ 1)

t−1∑
t′=1

zRT
t′

− (T − t)

2(T − t+ 1)
(µT |d1:t − µT ) +

1

2(T − t+ 1)
(dt − µt) +

1

2(T − t+ 1)

T−1∑
k=t+1

(µk|d1:t − µk)

The equation with k = t says:

2kf
(4− kf )

(µt − µT )− 2
t−1∑
t′=1

zRT
t′ − 2zRT

t − 2
T−1∑
t′=t

E[zRT
t′ |d1:t] + (dt − µt)− (µT |d1:t − µT ) = 0

Solving for zRT
t gives

zRT
t =

kf
(4− kf )

(µt − µT )−
t−1∑
t′=1

zRT
t′ −

T−1∑
t′=t

E[zRT
t′ |d1:t] +

1

2
(dt − µt)−

1

2
(µT |d1:t − µT )

Substituting the expression for
∑T−1

t′=t E[zRT
t′ |d1:t] gives

zRT
t =

kf
(4− kf )

(
µt −

1

(T − t+ 1)

T∑
k=t

µk

)
− 1

T − t+ 1

t−1∑
t′=1

zRT
t′ +

(T − t)

2(T − t+ 1)
(dt − µt)

− 1

2(T − t+ 1)
(µT |d1:t − µT )−

1

2(T − t+ 1)

T−1∑
k=t+1

(µk|d1:t − µk)

This gives a recursion that gives zRT
t in terms of zRT

t′ for 1 ≤ t′ ≤ t− 1. The recursion has the

form

zRT
t = at −

1

(T − t+ 1)

t−1∑
t′=1

zRT
t′
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This gives

(T − t+ 1)zRT
t = (T − t+ 1)at −

t−1∑
t′=1

zRT
t′

(T − t)zRT
t+1 − (T − t+ 1)zRT

t = (T − t)at+1 − (T − 1 + t)at − zRT
t

zRT
t+1 − zRT

t = at+1 − at −
1

(T − t)
at

Summing these equations from 1 to t− 1 gives

zRT
t − zRT

1 = at − a1 −
t−1∑
t′=1

1

(T − t′)
at′

We also have zRT
1 = a1, so

zRT
t = at −

t−1∑
t′=1

1

(T − t′)
at′

Note that we have

at =
kf

(4− kf )

(
µt −

1

(T − t+ 1)

T∑
k=t

µk

)
+

(T − t)

2(T − t+ 1)
(dt − µt)−

1

2(T − t+ 1)

T∑
k=t+1

(µk|d1:t − µk)

We have

zRT
1 = a1

=
kf

(4− kf )
(µ1 − µ̄) +

(T − 1)

2T
(d1 − µ1)−

1

2T

T∑
k=2

(µk|d1 − µk)
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and

zRT
2 = a1 −

1

(T − 1)
zRT
1

=
kf

(4− kf )

(
µ2 −

1

(T − 1)

T∑
k=2

µk

)
+

(T − 2)

2(T − 1)
(d2 − µ2)−

1

2(T − 1)

T∑
k=3

(µk|d1:2 − µk)

− 1

(T − 1)

(
kf

(4− kf )
(µ1 − µ̄) +

(T − 1)

2T
(d1 − µ1)−

1

2T

T∑
k=2

(µk|d1 − µk)

)

=
kf

(4− kf )
(µ2 − µ̄) +

(T − 2)

2(T − 1)
(d2 − µ2)−

1

2(T − 1)

T∑
k=3

(µk|d1:2 − µk)−
1

2T
(d1 − µ1) +

1

2T (T − 1)

T∑
k=2

(µk|d1 − µk)

We substitute the expressions of at and at′ in the zRT
t expression. The “constant” term is

kf/(4− kf ) times

µt −
1

(T − t+ 1)

(
T µ̄−

t−1∑
k=1

µk

)

−
t−1∑
t′=1

1

(T − t′)

(
µt′ −

1

(T − t′ + 1)

(
T µ̄−

t′−1∑
k=1

µk

))

= µt +

(
− T

(T − t+ 1)
+

t−1∑
t′=1

T

(T − t′)(T − t′ + 1)

)
µ̄

+
1

(T − t+ 1)

t−1∑
k=1

µk −
t−1∑
t′=1

1

(T − t′)
µt′ −

t−1∑
t′=1

t′−1∑
k=1

1

(T − t′)(T − t′ + 1)
µk

The coefficient of µ̄ is

− T

(T − t+ 1)
+

t−1∑
t′=1

(
T

T − t′
− T

T − t′ + 1

)
= − T

(T − t+ 1)
+

(
T

T − t+ 1
− T

T

)
= −1

We swap the order of the double summation (over t′ and k, to over k and t′) to get

t−1∑
k=1

t−1∑
t′=k+1

(
1

(T − t′)
− 1

(T − t′ + 1)

)
µk =

t−1∑
k=1

(
1

T − t+ 1
− 1

T − k

)
µk
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Therefore, all the terms cancel out to µt − µ̄ and the constant term is

kf
(4− kf )

(µt − µ̄)

The rest of zRT
t is

(T − t)

2(T − t+ 1)
(dt − µt)−

1

2(T − t+ 1)

T∑
k=t+1

(µk|d1:t − µk)

−
t−1∑
t′=1

1

(T − t′)

(
(T − t′)

2(T − t′ + 1)
(dt′ − µt′)−

1

2(T − t′ + 1)

T∑
k=t′+1

(µk|d1:t′ − µk)

)

Therefore, we have

zRT
t (d1:t) =

kf
(4− kf )

(µt − µ̄) +
(T − t)

2(T − t+ 1)
(dt − µt)−

t−1∑
t′=1

1

2(T − t′ + 1)
(dt′ − µt′)

− 1

2(T − t+ 1)

T∑
k=t+1

(µk|d1:t − µk) +
t−1∑
t′=1

T∑
k=t′+1

1

2(T − t′)(T − t′ + 1)
(µk|d1:t′ − µk)

We will now calculate Cost(CN) and Cost(DCN) when the demands in all periods are indepen-

dent.

We have

Cost = αT µ̄+
β

2
Cost’

with

Cost’ = (1− kf )
T∑
t=1

(µt − zDA
t )2 + kf

T∑
t=1

E
(
µt − zDA

t +
Dt − µt − zRT

t

kf

)2
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First, we have

Cost’(NB) = (1− kf )
T∑
t=1

(µt − 0)2 + kf

T∑
t=1

E
(
µt − 0 +

Dt − µt − 0

kf

)2

= (1− kf )
T∑
t=1

µ2
t + kf

T∑
t=1

(
µ2
t +

σ2
t

k2f

)

=
T∑
t=1

µ2
t +

T∑
t=1

σ2
t

kf

Now we compute Cost’(CN). We have µt − zDA
t = µ̄ for every 1 ≤ t ≤ T . For 1 ≤ t ≤ T − 1,

we have

Dt − µt − zRT
t =

t∑
t′=1

1

(T − t′ + 1)
(Dt′ − µt′)

For t = T , we have

zRT
T = −

T−1∑
t=1

zRT
t =

T−1∑
t=1

1

T − t+ 1
(Dt − µt)

so

DT − µT − zRT
T = (DT − µT )−

T−1∑
t=1

1

T − t+ 1
(Dt − µt)

For both 1 ≤ t ≤ T − 1 and t = T , we have

E
(
µt − zDA

t +
Dt − µt − zRT

t

kf

)2

= (µ̄)2 +
t∑

t′=1

1

(T − t′ + 1)2
σ2
t′

k2f

Now we note that

Therefore,

Cost’(CN) = (1− kf )T (µ̄)
2 + kf

(
T (µ̄)2 +

T∑
t′=1

1

(T − t′ + 1)

σ2
t′

k2f

)

= T (µ̄)2 +

T∑
t=1

1

(T − t+ 1)

σ2
t

kf
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Now we compute Cost’(DCN) We have

µt − zDA
t = µt −

(2− kf )

(4− kf )
(µt − µ̄) = µ̄+

2

(4− kf )
(µt − µ̄)

For 1 ≤ t ≤ T − 1, we have

Dt − µt − zRT
t = −

kf
(4− kf )

(µt − µ̄) +
(T − t+ 2)

2(T − t+ 1)
(Dt − µt) +

t−1∑
t′=1

1

2(T − t′ + 1)
(Dt′ − µt′)

so

E
(
µt − zDA

t +
Dt − µt − zRT

t

kf

)2

=

(
µ̄+

3

(4− kf )
(µt − µ̄)

)2

+

(
(T − t+ 2)

2(T − t+ 1)

)
σ2
t

k2f
+

T−1∑
t′=1

1

4(T − t′ + 1)2
σ2
t′

k2f

Now we compute

zRT
T = −

T−1∑
t=1

zRT
t =

kf
(4− kf )

(µT − µ̄)−
T−1∑
t=1

1

2(T − t+ 1)
(Dt − µt)

so

DT − µT − zRT
T =

kf
(4− kf )

(µT − µ̄) + (DT − µT ) +
T−1∑
t=1

1

2(T − t+ 1)
(Dt − µt)

E
(
µT − zDA

T +
DT − µT − zRT

T

kf

)2

=

(
µ̄+

1

(4− kf )
(µT − µ̄)

)2

+
σ2
T

k2f
+

T−1∑
t=1

1

4(T − t+ 1)2
σ2
t

k2f

So the equation for 1 ≤ t ≤ T − 1 also holds for t = T as well. Therefore,

Cost’(DCN) = (1− kf )

T∑
t=1

(
µ̄+

2

(4− kf )
(µt − µ̄)

)2

+ kf

T∑
t=1

(
1

(4− kf )2
(µt − µ̄)2 +

(T − t+ 2)2

4(T − t+ 1)2
σ2
t

kf
+

t−1∑
t′=1

1

4(T − t′ + 1)2
σ2
t′

kf

)
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Now we note that

T∑
t=1

t−1∑
t′=1

1

4(T − t′ + 1)2
σ2
t′

kf
=

T−1∑
t′=1

T∑
t=t′+1

1

4(T − t′ + 1)2
σ2
t′

kf
=

T−1∑
t′=1

(T − t′)

4(T − t′ + 1)2
σ2
t′

kf

and collecting the coefficients of σ2
t /kf :

(T − t+ 2)2

4(T − t+ 1)2
+

(T − t)

4(T − t+ 1)2
=

(T − t+ 4)

4(T − t+ 1)

for 1 ≤ t ≤ T − 1 and (T −T +2)2/(4(T −T +1)2) = 1, which is also equal to the above for t = T .

Therefore,

Cost’(DCN) = T µ̄2 +
4− 3kf
(4− kf )2

T∑
t=1

(µt − µ̄)2 +

T∑
t=1

(T − t+ 4)

4(T − t+ 1)

σ2
t

kf

Now, we note that

T∑
t=1

µ2
t − T µ̄2 =

T∑
t=1

(µt − µ̄)2

Therefore,

Cost’(NB)− Cost’(CN) =
T∑
t=1

(µt − µ̄)2 +
T∑
t=1

(T − t)

(T − t+ 1)

σ2
t

kf

Cost’(NB)− Cost’(DCN) =
12− 5kf + k2f

(4− kf )2

T∑
t=1

(µt − µ̄)2 +
T∑
t=1

3(T − t)

4(T − t+ 1)

σ2
t

kf

Note that
12−5kf+k2f
(4−kf )2

∈
[
9
8 ,

4
3

]
. Therefore,

PoA =
Cost(NB)− Cost(CN)

Cost(NB)− Cost(DCN)
=

Cost’(NB)− Cost’(CN)

Cost’(NB)− Cost’(DCN)
∈
[
9

8
,
4

3

]
.

We now calculate these quantities for a general multivariate normal distribution with T = 3

periods:
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(D1, D2, D3) ∼ N



µ1

µ2

µ3

 ,


σ2
1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ2
3


 .

We have

Cost’(NB)− Cost’(CN) =

3∑
t=1

(µt − µ̄)2 +
2σ2

1

3kf
+

σ2
2

2kf
− 2ρ12σ1σ2

3kf
− 2ρ13σ1σ3

3kf
− ρ23σ2σ3

kf

Cost’(NB)− Cost’(DCN) =
12− 5kf + k2f

(4− kf )2

3∑
t=1

(µt − µ̄)2

+
σ2
1

2kf
+

(27 + 2ρ212)σ
2
2

72kf
+

5ρ213σ
2
3

18kf
− ρ12σ1σ2

2kf
− ρ13σ1σ3

2kf
+

(22ρ12ρ13 − 36ρ23)σ2σ3
72kf

Therefore,

4(Cost’(NB)− Cost’(DCN))− 3(Cost’(NB)− Cost’(CN))

=
kf (4 + kf )

(4− kf )2

3∑
t=1

(µt − µ̄)2 +
ρ212σ

2
2 + 10ρ213σ

2
3 + (11ρ12ρ13 + 9ρ23)σ2σ3

9kf

We can see that if all correlations are positive ρ12, ρ13, ρ23 ≥ 0, then the expression above

will be ≥ 0, so we still have PoA ≤ 4/3. However, the above expression is not always negative.

The constraints on the covariance matrix is that the matrix must be positive semidefinite, that is

ρ12, ρ13, ρ23 ∈ [−1, 1] and 1 − ρ212 − ρ213 − ρ223 + 2ρ12ρ13ρ23 ≥ 0. In fact, numerical optimization

suggests that the maximum value of PoA is around 2, achieved at, for example, σ1 = σ2 ↓ 0, σ3 =

1, ρ12 = ρ13 = 0, ρ23 = −1. However, the parameter values where PoA is this high are expected to

be quite pathological, and we believe that for reasonable parameter values, PoA should be much

smaller than this, and is likely below 4/3.

Theorem 10 (Round-trip Inefficiency). Let the battery’s round-trip efficiency be η ∈ (0, 1] such

that the battery discharges in period 1 (peak) and charges in period 2 (off-peak).
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The centralized battery discharge decisions are given by

zDA
1 =

η2

1 + η2
µ1 −

η

1 + η2
µ2

zRT
1 (D1) =

η2

1 + η2
(D1 − µ1)−

η

1 + η2
(µ2|D1

− µ2)

The decentralized battery discharge decisions are given by, for each period t,

zDA
1 =

(2− kf )

(4− kf )

(
η2

1 + η2
µ1 −

η

1 + η2
µ2

)
zRT
1 (D1) =

kf
(4− kf )

(
η2

1 + η2
µ1 −

η

1 + η2
µ2

)
η2

2(1 + η2)
(D1 − µ1)−

η

2(1 + η2)
(µ2|D1

− µ2)

If we further assume that (D1, D2) ∼ π is jointly multivariate normal, then the bounds 9/8 ≤

PoA ≤ 4/3 always hold.

Proof. Proof of Theorem 10.

The calculations are similar to those in the proof of Theorem CN and Theorem DCN, but with

zDA
2 = −zDA

1 /η and zRT
2 = −zRT

1 /η instead.

We first compute the optimal strategy in the centralized case (CN).

Generation cost is

α(µ1 + µ2)

+ ks

[
β

2

[(
µ1 − zDA

1

)2
+

(
µ2 +

zDA
1

η

)2
]]

+ kfE

{
β

2

[(
µ1 − zDA

1 +
D1 − µ1 − zRT

1 (D1)

kf

)2

+

(
µ2 +

zDA
1

η
+

D2 − µ2 + zRT
1 (D1)/η

kf

)2
]}

For each fixed D1 = d1, we take the derivative w.r.t zRT
1 (d1):

ED2∼π(·|D1=d1)

{
− 1

kf

(
µ1 − zDA

1 +
d1 − µ1 − zRT

1 (d1)

kf

)
+

1

ηkf

(
µ2 +

zDA
1

η
+

D2 − µ2 + zRT
1 (d1)/η

kf

)}
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We now evaluate the expectations over D2 ∼ π(·|d1):

− 1

kf

(
µ1 − zDA

1 +
d1 − µ1 − zRT

1 (d1)

kf

)
+

1

ηkf

(
µ2 +

zDA
1

η
+

µ2|d1 − µ2 + zRT
1 (d1)/η

kf

)
= 0

The above simplifies to

η(µ2|d1 − µ2)− η2(d1 − µ1)− η2kfµ1 + ηkfµ2 + (1 + η2)kfz
DA
1 + (1 + η2)zRT

1 (d1) = 0

or

zRT
1 (d1) = −kfz

DA
1 +

−η(µ2|d1 − µ2) + η2(d1 − µ1) + η2kfµ1 − ηkfµ2

1 + η2

Therefore,

E[z̄RT
1 (D1)] = −kf z̄

DA
1 +

ηkf (ηµ1 − µ2)

1 + η2

We take the derivative w.r.t zDA
1 :

(1− kf )

[
−(µ1 − zDA

1 ) +
1

η

(
µ2 +

zDA
1

η

)]
+kfE

[
−
(
µ1 − zDA

1 +
D1 − µ1 − zRT

1 (D1)

kf

)
+

1

η

(
µ2 +

zDA
1

η
+

D2 − µ2 + zRT
1 (D1)/η

kf

)]

or

(1− kf )
[
−η(ηµ1 − µ2) + (1 + η2)zDA

1

]
+kf

[
−η(ηµ1 − µ2) + (1 + η2)zDA

1 +
1

kf
(1 + η2)E[zRT

1 (D1)]

]

or

−η(ηµ1 − µ2) + (1 + η2)z̄DA
1 + (1 + η2)E[z̄RT

1 (D1)] = 0
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Substituting the expression for E[z̄RT
1 (D1)] gives

−η(ηµ1 − µ2) + (1 + η2)z̄DA
1 − kf (1 + η2)z̄DA

1 + ηkf (ηµ1 − µ2) = 0

or

z̄DA
1 =

η(ηµ1 − µ2)

1 + η2

This gives

z̄RT
1 (d1) =

η2

1 + η2
(d1 − µ1)−

η

1 + η2
(µ2|d1 − µ2)

We now compute the generation cost Cost(CN). We have

(µ1 − zDA
1 )2 +

(
µ2 +

zDA
1

η

)2

=
(µ1 + ηµ2)

2

1 + η2

and

E
(
µ1 − zDA

1 +
D1 − µ1 − zRT

1 (D1)

kf

)2

=
1

k2f (1 + η2)2
E
(
kf (µ1 + ηµ2) + (D1 − µ1) + η(µ2|D1

− µ2)
)2

=
1

k2f (1 + η2)2
(
k2f (µ1 + ηµ2)

2 + σ2
1 + η2ρ2sσ

2
2 + 2ηρσ1σ2

)
and

E
(
µ2 +

zDA
1

η
+

D2 − µ2 + zRT
1 (D1)/η

kf

)2

=
1

k2f (1 + η2)2
E
(
kfη(µ1 + ηµ2) + η(D1 − µ1) + (1 + η2)(D2 − µ2)− (µ2|D1

− µ2)
)2

=
1

k2f (1 + η2)2
(
k2fη

2(µ1 + ηµ2)
2 + η2σ2

1 + (1 + η2)2σ2
2 + ρ2sσ

2
2 + 2η(1 + η2)ρσ1σ2 − 2ηρσ1σ2 − 2(1 + η2)ρ2sσ

2
2

)
=

1

k2f (1 + η2)2
(
k2fη

2(µ1 + ηµ2)
2 + η2σ2

1 + ((1 + η2)2 − (1 + 2η2)ρ2s)σ
2
2 + 2η3ρσ1σ2

)
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Therefore,

E
(
µ1 − zDA

1 +
D1 − µ1 − zRT

1 (D1)

kf

)2

+ E
(
µ2 +

zDA
1

η
+

D2 − µ2 + zRT
1 (D1)/η

kf

)2

=
1

k2f (1 + η2)2

(
k2f (1 + η2)(µ1 + ηµ2)

2 + (1 + η2)σ2
1 + (1 + η2)(1 + η2 − ρ2s)σ

2
2 + 2η(1 + η2)ρσ1σ2

)
=

1

k2f (1 + η2)

(
k2f (µ1 + ηµ2)

2 + σ2
1 + (1 + η2 − ρ2s)σ

2
2 + 2ηρσ1σ2

)
Therefore, the generation cost is

α(µ1 + µ2)

+ ks

[
β

2

[(
µ1 − zDA

1

)2
+

(
µ2 +

zDA
1

η

)2
]]

+ kfE

{
β

2

[(
µ1 − zDA

1 +
D1 − µ1 − zRT

1 (D1)

kf

)2

+

(
µ2 +

zDA
1

η
+

D2 − µ2 + zRT
1 (D1)/η

kf

)2
]}

so

Cost(CN) = α(µ1 + µ2) + β
(µ1 + ηµ2)

2

2(1 + η2)
+

β

2(1 + η2)kf

[
σ2
1 + (1 + η2 − ρ2s)σ

2
2 + 2ηρσ1σ2

]
We now consider the decentralized case.

The prices are given by

λDA
1 = α+ β(µ1 − zDA

1 )

λDA
2 = α+ β

(
µ2 +

zDA
1

η

)
λRT
1 = α+ β

(
µ1 − zDA

1 +
d1 − µ1 − zRT

1

kf

)
λRT
2 = α+ β

(
µ2 +

zDA
1

η
+

d2 − µ2 + zRT
1 /η

kf

)
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Battery profit is

λDA
1 zDA

1 + λDA
2 zDA

2 + E[λRT
1 zRT

1 + λRT
2 zRT

2 ]

=

(
λDA
1 − λDA

2

η

)
zDA
1 + E

[(
λRT
1 − λRT

2

η

)
zRT
1

]
= β

(
µ1 −

µ2

η
− 1 + η2

η2
zDA
1

)
zDA
1

+ βE
[(

µ1 −
µ2

η
− 1 + η2

η2
zDA
1 +

1

kf

(
D1 − µ1 −

D2 − µ2

η
− 1 + η2

η2
zRT
1 (D1)

))
zRT
1 (D1)

]

Taking the derivative with respect to zRT
1 (d1):

µ1 −
µ2

η
− 1 + η2

η2
zDA
1 +

1

kf

(
d1 − µ1 −

µ2|d1 − µ2

η
− 1 + η2

η2
2zRT

1 (d1)

)
= 0

or

zRT
1 (d1) = −

kf
2
zDA
1 +

ηkf
2(1 + η2)

(ηµ1 − µ2) +
η2

2(1 + η2)
(d1 − µ1)−

η

2(1 + η2)
(µ2|d1 − µ2)

This gives

E[zRT
1 (D1)] = −

kf
2
zDA
1 +

ηkf
2(1 + η2)

(ηµ1 − µ2)

Taking the derivative with respect to zDA
1

µ1 −
µ2

η
− 2(1 + η2)

η2
zDA
1 + E

[(
−1 + η2

η2

)
zRT
1 (D1)

]
= 0

Substituting the expression for E[zRT
1 (D1)] gives

zDA
1 =

(2− kf )

(4− kf )

η

(1 + η2)
(ηµ1 − µ2)

This gives

zRT
1 (d1) =

kf
(4− kf )

η

1 + η2
(ηµ1 − µ2) +

η2

2(1 + η2)
(d1 − µ1)−

η

2(1 + η2)
(µ2|d1 − µ2)

Substituting these into the generation cost expression and using Proposition 1 yields the gen-
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eration cost

Cost(DCN) = α(µ1 + µ2)

+ β

{
16 + 4η2 − (8 + 3η2)kf + k2f

2(1 + η2)(4− kf )2
µ2
1 +

4 + 16η2 − (3 + 8η2)kf + η2k2f
2(1 + η2)(4− kf )2

µ2
2 +

η(12− 5kf + k2f )

(1 + η2)(4− kf )2
µ1µ2

+
(4 + η2)σ2

1 + (4 + 4η2 − 3ρ2s)σ
2
2 + 6ηρσ1σ2

8(1 + η2)kf

}

The cost under a no-battery regime is exactly the same as before in Theorem 1 (no η is involved,

because there is no charging and discharging):

Cost(NB) = α(µ1 + µ2) + β

(
µ2
1 + µ2

2

2
+

σ2
1 + σ2

2

2kf

)

Assuming ρs = ρ, we therefore have

Cost(NB)− Cost(CN) = β

(
(ηµ1 − µ2)

2

2(1 + η2)
+

(ησ1 − ρσ2)
2

2kf (1 + η2)

)
Cost(NB)− Cost(DCN) = β

(
(12− 5kf + k2f )

(4− kf )2
(ηµ1 − µ2)

2

2(1 + η2)
+

3(ησ1 − ρσ2)
2

8kf (1 + η2)

)

Because
(12−5kf+k2f )

(4−kf )2
∈
[
3
4 ,

8
9

]
for kf ∈ [0, 1], we have PoA ∈

[
9
8 ,

4
3

]
as desired.

Theorem 11 (Non-Parallel Supply Curves). Here, we assume

G−1
s (x) = αs + βsx

G−1
f (x) = αf + βfx

(Note that if we want to match the previous assumption, we will have αs = α, βs = β/ks, αf =

α, βf = β/kf with ks = 1− kf .) The centralized battery discharge decisions are given by

zDA
1 =

1

2
(µ1 − µ2)

zRT
1 (D1) =

1

2
(D1 − µ1)−

1

2
(µ2|D1

− µ2)
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The decentralized battery discharge decisions are given by

zDA
1 =

2βf + βs
2(4βf + 3βs)

(µ1 − µ2)

zRT
1 (D1) =

1

4
(D1 − µ1)−

1

4
(µ2|D1

− µ2) +
βs

2(4βf + 3βs)
(µ1 − µ2)

The system generation costs in each regime (no battery NB, centralized CN, decentralized DCN)

are given by

Cost(NB) = −
(αf − αs)

2

βf + βs
+

(αfβs + αsβf )

(βs + βf )
(µ1 + µ2) +

βfβs
2(βf + βs)

(µ2
1 + µ2

2) +
βf
2
(σ2

1 + σ2
2)

Cost(CN) = −
(αf − αs)

2

(βs + βf )
+

(αfβs + αsβf )

(βs + βf )
(µ1 + µ2) +

βsβf
4(βs + βf )

(µ1 + µ2)
2 +

βf
4
(σ2

1 + (2− ρ2s)σ
2
2 + 2ρσ1σ2)

Cost(DCN) = −
(αf − αs)

2

βf + βs
+

αfβs + αsβf
βs + βf

(µ1 + µ2)

+
βfβs(20β

2
f + 29βfβs + 10β2

s )

4(βf + βs)(4βf + 3βs)2
(µ2

1 + µ2
2) +

βfβs(12β
2
f + 19βfβs + 8β2

s )

2(βf + βs)(4βf + 3βs)2
µ1µ2

+
βf
16

(
5σ2

1 + (8− 3ρ2s)σ
2
2 + 6ρσ1σ2

)
Assuming ρs = ρ, we have

9

8
≤ PoA ≤ 4

3

for every parameter. The lower bound 9/8 is achieved when βf ≪ βs. The upper bound 4/3 is

achieved when βs ≪ βf .

Proof. Proof of Theorem 11. We then have

Gs(λ) =
λ− αs

βs
, Gf (λ) =

λ− αf

βf

From

Gs(λ
DA
t ) +Gf (λ

DA
t ) = dDA

t

Gs(λ
DA
t ) +Gf (λ

RT
t ) = dDA

t + dRT
t
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with dDA
t = µt − zDA

t , dRT
t = Dt − µt − zRT

t . Solving for λDA
t , λRT

t gives

λDA
t =

αfβs + αsβf
βs + βf

+
βsβf

βs + βf
dDA
t

λRT
t =

αfβs + αsβf
βs + βf

+
βsβf

βs + βf
dDA
t + βfd

RT
t

The generation cost is given by

2∑
t=1

[∫
λ≤λDA

t

λdGs(λ) + E

[∫
λ≤λRT

t

λdGf (λ)

]]
=

2∑
t=1

[
(λDA

t )2 − α2
s

2βs
+ E

[
(λRT

t )2 − α2
f

2βf

]]

We first calculate the no-battery case.

Let α =
αfβs+αsβf

βf+βs
. WE have

λDA
1 = α+

βfβs
βf + βs

µ1

λDA
2 = α+

βfβs
βf + βs

µ2

λRT
1 = α+

βfβs
βf + βs

µ1 + βf (D1 − µ1)

λRT
2 = α+

βfβs
βf + βs

µ2 + βf (D2 − µ2)

E(λRT
1 )2 =

(
α+

βfβs
βf + βs

µ1

)2

+ β2
fσ

2
1

E(λRT
2 )2 =

(
α+

βfβs
βf + βs

µ2

)2

+ β2
fσ

2
2

So

Cost(NB) =

(
1

2βs
+

1

2βf

)
((λDA

1 )2 + (λDA
2 )2) +

β2
fσ

2
1 + β2

fσ
2
2

2βf
− α2

s

βs
−

α2
f

βf

=

(
(βf + βs)

βfβs
α2 − α2

s

βs
−

α2
f

βf

)
+ α(µ1 + µ2) +

βfβs
2(βf + βs)

(µ2
1 + µ2

2) +
βf
2
σ2
1 +

βf
2
σ2
2

= −
(αf − αs)

2

βf + βs
+ α(µ1 + µ2) +

βfβs
2(βf + βs)

(µ2
1 + µ2

2) +
βf
2
σ2
1 +

βf
2
σ2
2

Now we calculate the centralized case.

Remember that dDA
1 = µ1− zDA

1 , dDA
2 = µ2+ zDA

1 , dRT
1 = D1−µ1− zRT

1 (D1), d
RT
2 = D2−µ2+
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zRT
1 (D1)

For each fixed D1 = d1, we take the derivative w.r.t. zRT
1 (d1). We get

E
[
2λRT

1 (−βf ) + 2λRT
2 (βf )|D1 = d1

]
= 0

or

E
[

βsβf
βs + βf

(µ2 − µ1 + 2zDA
1 ) + βf ((D2 − µ2)− (D1 − µ1) + 2zRT

1 (D1))|D1 = d1

]
= 0

or E[λRT
2 − λRT

1 |D1 = d1] = 0, which becomes

βs(µ2 − µ1 + 2zDA
1 ) + (βs + βf )((µ2|d1 − µ2)− (d1 − µ1) + 2zRT

1 (d1)) = 0

this allows us to write zRT
1 (d1) in terms of zDA

1 :

zRT
1 (d1) = − βs

βs + βf
zDA
1 +

βs
2(βs + βf )

(µ1 − µ2) +
1

2
(d1 − µ1)−

1

2
(µ2|d1 − µ2)

In particular, this implies

E[zRT
1 (D1)] = − βs

βs + βf
zDA
1 +

βs
2(βs + βf )

(µ1 − µ2)

Taking the derivative w.r.t. zDA
1 gives

1

2βs

[
2λDA

1

(
−

βsβf
βs + βf

)
+ 2λDA

2

(
βsβf

βs + βf

)]
+

1

2βf
E
[
2λRT

1

(
−

βsβf
βs + βf

)
+ 2λRT

2

(
βsβf

βs + βf

)]
= 0

or

λDA
2 − λDA

1

βs
+

E[λRT
2 − λRT

1 ]

βf
= 0

or

1

βs

βsβf
βs + βf

(µ2 − µ1 + 2zDA
1 ) +

1

βf

(
βsβf

βs + βf
(µ2 − µ1 + 2zDA

1 ) + βfE[(D2 − µ2)− (D1 − µ1) + 2zRT
1 (D1)]

)
= 0
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or

(µ2 − µ1 + 2zDA
1 ) + 2E[zRT

1 (D1)] = 0

Using the expression for E[zRT
1 (D1)] derived earlier, we get

zDA
1 =

1

2
(µ1 − µ2)

zRT
1 (d1) =

1

2
(d1 − µ1)−

1

2
(µ2|d1 − µ2)

We now compute generation cost. We have

λDA
1 = λDA

2 =
αfβs + αsβf

βs + βf
+

βsβf
2(βs + βf )

(µ1 + µ2)

λRT
1 =

αfβs + αsβf
βs + βf

+
βsβf

2(βs + βf )
(µ1 + µ2) +

βf
2
((D1 − µ1) + (µ2|D1

− µ2))

λRT
2 =

αfβs + αsβf
βs + βf

+
βsβf

2(βs + βf )
(µ1 + µ2) +

βf
2
(2(D2 − µ2) + (D1 − µ1)− (µ2|D1

− µ2))

We have

E[(λRT
1 )2] =

(
αfβs + αsβf

βs + βf
+

βsβf
2(βs + βf )

(µ1 + µ2)

)2

+
β2
f

4
(σ2

1 + ρ2sσ
2
2 + 2ρσ1σ2)

and

E[(λRT
2 )2] =

(
αfβs + αsβf

βs + βf
+

βsβf
2(βs + βf )

(µ1 + µ2)

)2

+
β2
f

4
(σ2

1 + (4− 3ρ2s)σ
2
2 + 2ρσ1σ2)
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The generation cost is therefore

Cost(CN) =
2∑

t=1

[
(λDA

t )2 − α2
s

2βs
+ E

[
(λRT

t )2 − α2
f

2βf

]]

=
(λDA

1 )2 − α2
s

βs
+

1

2βf

[
2(λDA

1 )2 +
β2
f

4
(2σ2

1 + (4− 2ρ2s)σ
2
2 + 4ρσ1σ2)− 2α2

f

]

=

(
1

βs
+

1

βf

)
(λDA

1 )2 − α2
s

βs
−

α2
f

βf
+

βf
4
(σ2

1 + (2− ρ2s)σ
2
2 + 2ρσ1σ2)

=
βs + βf
βsβf

(
αfβs + αsβf

βs + βf
+

βsβf
2(βs + βf )

(µ1 + µ2)

)2

− α2
s

βs
−

α2
f

βf
+

βf
4
(σ2

1 + (2− ρ2s)σ
2
2 + 2ρσ1σ2)

= −
(αf − αs)

2

(βs + βf )
+

(αfβs + αsβf )

(βs + βf )
(µ1 + µ2) +

βsβf
4(βs + βf )

(µ1 + µ2)
2 +

βf
4
(σ2

1 + (2− ρ2s)σ
2
2 + 2ρσ1σ2)

Lastly, we calculate the decentralized case.

The battery maximizes profit

Π = (λDA
1 − λDA

2 )zDA
1 + E[(λRT

1 − λRT
2 )zRT

1 (D1)]

=
βsβf

βs + βf
(µ1 − µ2 − 2zDA

1 )zDA
1

+ E
[(

βsβf
βs + βf

(µ1 − µ2 − 2zDA
1 ) + βf ((D1 − µ1)− (D2 − µ2)− 2zRT

1 (D1))

)
zRT
1 (D1)

]

Taking the derivative w.r.t. zRT
1 (d1) for a given fixed d1 gives, for each d1,

E
[

βsβf
βs + βf

(µ1 − µ2 − 2zDA
1 ) + βf (D1 − µ1)− βf (D2 − µ2)− 4βfz

RT
1 (D1)|D1 = d1

]
= 0

This reduces to

zRT
1 (d1) =

1

4
(d1 − µ1)−

1

4
(µ2|d1 − µ2) +

βs
4(βs + βf )

(µ1 − µ2 − 2zDA
1 )

In particular,

E[zRT
1 (D1)] =

βs
4(βs + βf )

(µ1 − µ2 − 2zDA
1 )
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Now we take derivative w.r.t zDA
1 :

βsβf
βs + βf

(µ1 − µ2 − 4zDA
1 ) + E

[
βsβf

βs + βf
(−2)zRT

1 (D1)

]
= 0

Using the expression for E[zRT
1 (D1)] derived earlier gives

zDA
1 =

(βs + 2βf )

2(3βs + 4βf )
(µ1 − µ2)

zRT
1 (d1) =

1

4
(d1 − µ1)−

1

4
(µ2|d1 − µ2) +

βs
2(3βs + 4βf )

(µ1 − µ2)

We then have

λDA
1 =

αfβs + αsβf
βs + βf

+
βsβf (5βs + 6βf )

2(βs + βf )(3βs + 4βf )
µ1 +

βsβf (βs + 2βf )

2(βs + βf )(3βs + 4βf )
µ2

λDA
2 =

αfβs + αsβf
βs + βf

+
βsβf (βs + 2βf )

2(βs + βf )(3βs + 4βf )
µ1 +

βsβf (5βs + 6βf )

2(βs + βf )(3βs + 4βf )
µ2

λRT
1 =

αfβs + αsβf
βs + βf

+
βsβf (4βs + 5βf )

2(βs + βf )(3βs + 4βf )
µ1 +

βsβf (2βs + 3βf )

2(βs + βf )(3βs + 4βf )
µ2

+
3βf
4

(D1 − µ1) +
βf
4
(µ2|D1

− µ2)

λRT
2 =

αfβs + αsβf
βs + βf

+
βsβf (2βs + 3βf )

2(βs + βf )(3βs + 4βf )
µ1 +

βsβf (4βs + 5βf )

2(βs + βf )(3βs + 4βf )
µ2

+
βf
4
(D1 − µ1)−

βf
4
(µ2|D1

− µ2) + βf (D2 − µ2)

We have

Cost(DCN) =
2∑

t=1

[
(λDA

t )2 − α2
s

2βs
+ E

[
(λRT

t )2 − α2
f

2βf

]]
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Note that

E[(λRT
1 )2] =

(
αfβs + αsβf

βs + βf
+

βsβf (4βs + 5βf )

2(βs + βf )(3βs + 4βf )
µ1 +

βsβf (2βs + 3βf )

2(βs + βf )(3βs + 4βf )
µ2

)2

+
β2
f

16

(
9σ2

1 + ρ2sσ
2
2 + 6ρσ1σ2

)
E[(λRT

2 )2] =

(
αfβs + αsβf

βs + βf
+

βsβf (2βs + 3βf )

2(βs + βf )(3βs + 4βf )
µ1 +

βsβf (4βs + 5βf )

2(βs + βf )(3βs + 4βf )
µ2

)2

+
β2
f

16

(
σ2
1 + (16− 7ρ2s)σ

2
2 + 6ρσ1σ2

)
Let α =

αfβs+αsβf

βs+βf
.

The cost becomes

α2(βf + βs)

βfβs
+ α(µ1 + µ2) +

βfβs(20β
2
f + 29βfβs + 10β2

s )

4(βf + βs)(4βf + 3βs)2
(µ2

1 + µ2
2) +

βfβs(12β
2
f + 19βfβs + 8β2

s )

2(βf + βs)(4βf + 3βs)2
µ1µ2

−2α2
s

2βs
−

2α2
f

2βf
+

β2
f/16

2βf
(10σ2

1 + (16− 6ρ2s)σ
2
2 + 12ρσ1σ2)

Now we note that

α2(βf + βs)

βfβs
− α2

s

βs
−

α2
f

βf
= −

(αf − αs)
2

βf + βs

Therefore,

Cost(DCN) = −
(αf − αs)

2

βf + βs
+

αfβs + αsβf
βs + βf

(µ1 + µ2)

+
βfβs(20β

2
f + 29βfβs + 10β2

s )

4(βf + βs)(4βf + 3βs)2
(µ2

1 + µ2
2) +

βfβs(12β
2
f + 19βfβs + 8β2

s )

2(βf + βs)(4βf + 3βs)2
µ1µ2

+
βf
16

(
5σ2

1 + (8− 3ρ2s)σ
2
2 + 6ρσ1σ2

)
We can now prove the bounds on the Price of Anarchy. Assuming ρs = ρ, we have

Cost(NB)− Cost(CN) =
βfβs

4(βf + βs)
(µ1 − µ2)

2 +
βf
4
(σ1 − ρσ2)

2

Cost(NB)− Cost(DCN) =
βfβs(12β

2
f + 19βfβs + 8β2

s )

4(βf + βs)(4βf + 3βs)2
(µ1 − µ2)

2 +
3βf
16

(σ1 − ρσ2)
2
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This implies 9/8 ≤ PoA ≤ 4/3 as desired.

Theorem 12 (Convex Supply Curves). Assume G−1(x) = α+ βx+ γx2 with α, β, γ ≥ 0.

The centralized battery discharge decisions are given by

zDA
1 =

1

2
(µ1 − µ2) +O(γ2)

zRT
1 (D1) =

1

2
(D1 − µ1)−

1

2
(µ2|D1

− µ2)−
σ2
2|D1

2kf

γ

β
+O(γ2),

The decentralized battery discharge decisions are given by

zDA
1 =

(2− kf )

2(4− kf )
(µ1 − µ2)−

(σ2
1 − σ2

2)

2kf (4− kf )

γ

β
+O(γ2)

zRT
1 (D1) =

kf
2(4− kf )

(µ1 − µ2) +
1

4
(D1 − µ1)−

1

4
(µ2|d1 − µ2) +

(
σ2
1 − σ2

2

4(4− kf )
−

σ2
2|D1

4kf

)
γ

β
+O(γ2)

Proof. Proof of Theorem 12. We first solve the centralized case.

Generation cost is

α(µ1 + µ2)

+ ks

[
β

2

[
(µ1 − zDA

1 )2 + (µ2 + zDA
1 )2

]
+

1

3

[
(µ1 − zDA

1 )3 + (µ2 + zDA
1 )3

]
γ

]
+ kfED1,D2

{
β

2

[(
µ1 − zDA

1 +
D1 − µ1 − zRT

1 (D1)

kf

)2

+

(
µ2 + zDA

1 +
D2 − µ2 + zRT

1 (D1)

kf

)2
]

+
1

3

[(
µ1 − zDA

1 +
D1 − µ1 − zRT

1 (D1)

kf

)3

+

(
µ2 + zDA

1 +
D2 − µ2 + zRT

1 (D1)

kf

)3
]
γ

}

We first note that if γ = 0, then the generation cost is strictly convex (quadratic) in the decision

variables. So, for γ sufficiently close to zero, the global minimum is achieved where first-order

conditions hold with equality.

For each fixed D1 = d1, we take the derivative w.r.t zRT
1 (d1). By the law of iterated expecta-

tions, the expectation ED1,D2 can be viewed as taking expectation ED1 followed by the conditional

expectation ED2|D1
, by focusing on zRT

1 (d1) we fix the value D1 = d1 while the inner expectation
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becomes an expectation over D2 ∼ π(·|D1 = d1). We therefore get

ED2∼π(·|D1=d1)

{
β

[
− 1

kf

(
µ1 − zDA

1 +
d1 − µ1 − zRT

1 (d1)

kf

)
+

1

kf

(
µ2 + zDA

1 +
D2 − µ2 + zRT

1 (D1)

kf

)]

+

[
− 1

kf

(
µ1 − zDA

1 +
d1 − µ1 − zRT

1 (d1)

kf

)2

+
1

kf

(
µ2 + zDA

1 +
D2 − µ2 + zRT

1 (d1)

kf

)2
]
γ

}
= 0

We will calculate the expectations in terms of µ2|d1 and σ2
2|d1 . First we evaluate the expectation,

using the last equation of Proposition 1 to evaluate the quadratic term in D2, then multiply across

by kf :

β

kf

[
−kf (µ1 − µ2) + 2kfz

DA
1 − (d1 − µ1) + (µ2|d1 − µ2) + 2zRT

1 (d1)
]

+
γ

k2f

[
−
(
kf (µ1 − zDA

1 ) + d1 − µ1 − zRT
1 (d1)

)2
+ σ2

2|d1 +
(
µ2|d1 − µ2 + zRT

1 (d1) + kf (µ2 + zDA
1 )

)2 ]
= 0

Let γ̃ = γ/β. We get

kf
[
(µ2|d1 − µ2)− (d1 − µ1)− kf (µ1 − µ2) + 2kfz

DA
1 + 2zRT

1 (d1)
]

+ γ̃
{
σ2
2|d1 +

[
(µ2|d1 − µ2) + (d1 − µ1) + kf (µ1 + µ2)

]
×[

(µ2|d1 − µ2)− (d1 − µ1)− kf (µ1 − µ2) + 2kfz
DA
1 + 2zRT

1 (d1)
] }

= 0 (19)

Taking the derivative w.r.t. zDA
1 gives

ks

[
β
[
−(µ1 − zDA

1 ) + (µ2 + zDA
1 )

]
+ γ

[
−(µ1 − zDA

1 )2 + (µ2 + zDA
1 )2

] ]

+ kfED1,D2

{
β

[
−
(
µ1 − zDA

1 +
D1 − µ1 − zRT

1 (D1)

kf

)
+

(
µ2 + zDA

1 +
D2 − µ2 + zRT

1 (D1)

kf

)]

+ γ

[
−
(
µ1 − zDA

1 +
D1 − µ1 − zRT

1 (D1)

kf

)2

+

(
µ2 + zDA

1 +
D2 − µ2 + zRT

1 (D1)

kf

)2
]}

= 0
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or (with γ̃ = γ/β):

(ks + kf )(µ2 − µ1 + 2zDA
1 ) + ks(µ2 + µ1)(µ2 − µ1 + 2zDA

1 )γ̃

+ kfED1,D2

{
1

kf

[
(D2 − µ2)− (D1 − µ1) + 2zRT

1 (D1)
]

+
γ̃

k2f

[
kf (µ2 − µ1 + 2zDA

1 ) + (D2 − µ2)− (D1 − µ1) + 2zRT
1 (D1)

]
× [(D1 − µ1) + (D2 − µ2) + kf (µ1 + µ2)]

}
= 0

or

(µ2 − µ1 + 2zDA
1 ) + ks(µ2 + µ1)(µ2 − µ1 + 2zDA

1 )γ̃

+ kfED1,D2

{
1

kf

[
2zRT

1 (D1)
]

+
γ̃

k2f

[
kf (µ2 − µ1 + 2zDA

1 ) + (D2 − µ2)− (D1 − µ1) + 2zRT
1 (D1)

]
× [(D1 − µ1) + (D2 − µ2) + kf (µ1 + µ2)]

}
= 0 (20)

We now have equations (19) and (20) for zDA
1 and zRT

1 (d1) from first-order conditions on zRT
1 (d1)

and zDA
1 , respectively, which we want to solve.

We now write

zDA
1 := z̄DA

1 + ẑDA
1 γ̃ +O(γ̃2)

zRT
1 (d0) := z̄RT

1 (d0) + ẑRT
1 (d0)γ̃ +O(γ̃2).

The main term of the zRT
1 (d1) derivative equation is, for every d1,

(µ2|d1 − µ2)− (d1 − µ1)− kf (µ1 − µ2) + 2kf z̄
DA
1 + 2z̄RT

1 (d1) = 0

or

z̄RT
1 (d1) = −kf z̄

DA
1 +

kf
2
(µ1 − µ2) +

1

2
(d1 − µ1)−

1

2
(µ2|d1 − µ2)
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Therefore,

E[z̄RT
1 (D1)] = −kf z̄

DA
1 +

kf
2
(µ1 − µ2)

The main term of the zDA
1 derivative equation (20) gives

µ2 − µ1 + 2z̄DA
1 + 2E[z̄RT

1 (D1)] = 0

Substituting the expression for E[z̄RT
1 (D1)] gives

z̄DA
1 =

µ1 − µ2

2

Putting z̄DA
1 into the expression for z̄RT

1 (d1) gives

z̄RT
1 (d1) =

1

2
(d1 − µ1)−

1

2
(µ2|d1 − µ2).

The curvature correction term of the zRT
1 (d1) derivative equation (19) gives

2k2f ẑ
DA
1 + 2kf ẑ

RT
1 (d1) +

{
σ2
2|d1 +

[
(µ2|d1 − µ2) + (d1 − µ1) + kf (µ1 + µ2)

]
×[

(µ2|d1 − µ2)− (d1 − µ1)− kf (µ1 − µ2) + 2kf z̄
DA
1 + 2z̄RT

1 (d1)
] }

= 0

Note that
[
(µ2|d1 − µ2)− (d1 − µ1)− kf (µ1 − µ2) + 2kf z̄

DA
1 + 2z̄RT

1 (d1)
]
= 0 for every d1 by

the defining equation for zRT
1 (d1). Therefore,

2k2f ẑ
DA
1 + 2kf ẑ

RT
1 (d1) + σ2

2|d1 = 0

or

ẑRT
1 (d1) = −kf ẑ

DA
1 −

σ2
2|d1
2kf
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Taking the expectation over d1 and using Proposition 1 gives

E[ẑRT
1 (D1)] = −kf ẑ

DA
1 − (1− ρ2s)σ

2
2

2kf

The curvature correction term of the zDA
1 derivative equation (20) gives

2ẑDA
1 + ks(µ2 + µ1)(µ2 − µ1 + 2z̄DA

1 )

+E

[
2ẑRT

1 (D1) +
1

k2f

[
kf (µ2 − µ1 + 2z̄DA

1 ) + (D2 − µ2)− (D1 − µ1) + 2z̄RT
1 (D1)

]
× [(D1 − µ1) + (D2 − µ2) + kf (µ1 + µ2)]

]
= 0

Using Proposition 1, the last expectation term evaluates to 0 + (1 − ρ2s)σ
2
2 + 0 = (1 − ρ2s)σ

2
2.

Also substitute the expression for E[ẑRT
1 (D1)] gives

2ẑDA
1 + 2

(
−kf ẑ

DA
1 − (1− ρ2s)σ

2
2

2kf

)
+

1

kf
(1− ρ2s)σ

2
2 = 0

This yields

ẑDA
1 = 0.

Therefore,

ẑRT
1 (d1) = −

σ2
2|d1
2kf

.

We conclude that the battery discharges are given by

zDA
1 =

1

2
(µ1 − µ2) +O(γ̃2)

zRT
1 (d1) =

1

2
(d1 − µ1)−

1

2
(µ2|d1 − µ2)−

σ2
2|d1
2kf

γ̃ +O(γ̃2),

as claimed in the theorem.

We now solve the decentralized case.
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The prices are given by

λDA
1 = α+ βdDA

1 + γ(dDA
1 )2

λDA
2 = α+ βdDA

2 + γ(dDA
2 )2

λRT
1 = α+ β

(
dDA
1 +

dRT
1

kf

)
+ γ

(
dDA
1 +

dRT
1

kf

)2

λRT
2 = α+ β

(
dDA
2 +

dRT
2

kf

)
+ γ

(
dDA
2 +

dRT
2

kf

)2

with

dDA
1 = µ1 − zDA

1

dDA
2 = µ2 + zDA

1

dRT
1 = D1 − µ1 − zRT

1 (D1)

dRT
2 = D2 − µ2 + zRT

1 (D1)

The battery maximizes profit:

Π = (λDA
1 − λDA

2 )zDA
1 + E

[
(λRT

1 − λRT
2 )zRT

1 (D1)
]

We can write

Π = β(µ1 − µ2 − 2zDA
1 )zDA

1 + γ(µ1 + µ2)(µ1 − µ2 − 2zDA
1 )zDA

1

+ E
[
β

(
µ1 − µ2 − 2zDA

1 +
((D1 − µ1)− (D2 − µ2)− 2zRT

1 (D1))

kf

)
zRT
1 (D1)

+ γ

(
µ1 + µ2 +

(D1 − µ1) + (D2 − µ2)

kf

)(
µ1 − µ2 − 2zDA

1 +
((D1 − µ1)− (D2 − µ2)− 2zRT

1 (D1))

kf

)
zRT
1 (D1)

]
Taking derivative w.r.t. zRT

1 (d1) for a given fixed d1 gives, for each d1,

ED2∼π(·|d1)

[
β

(
µ1 − µ2 − 2zDA

1 +
((d1 − µ1)− (D2 − µ2)− 4zRT

1 (d1))

kf

)

+ γ

(
µ1 + µ2 +

(d1 − µ1) + (D2 − µ2)

kf

)(
µ1 − µ2 − 2zDA

1 +
((d1 − µ1)− (D2 − µ2)− 4zRT

1 (d1))

kf

)]
= 0
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This reduces to

k2f (µ1 − µ2 − 2zDA
1 ) + kf (d1 − µ1)− kf (µ2|d1 − µ2)− 4kfz

RT
1 (d1)

+ γ

{
− σ2

2|d1

+
(
(µ2|d1 − µ2) + (d1 − µ1) + kfµ1 + kfµ2

)
×
(
−(µ2|d1 − µ2) + (d1 − µ1)− 4zRT

1 (d1) + kfµ1 − kfµ2 − 2kfz
DA
1

)}
(21)

Now we take derivative w.r.t zDA
1 :

β(µ1 − µ2 − 4zDA
1 ) + γ(µ1 + µ2)(µ1 − µ2 − 4zDA

1 )

+ E
[
β(−2)zRT

1 (D1) + γ

(
µ1 + µ2 +

(D1 − µ1) + (D2 − µ2)

kf

)
(−2)zRT

1 (D1)

]
= 0 (22)

We now have (21) and (22) from the first order conditions over zRT
1 (D1) and zDA

1 . Now we look

at the main and curvature correction terms in turn.

Let γ̃ = γ/β. We write

zDA
1 = z̄DA

1 + ẑDA
1 γ̃ +O(γ̃2)

zRT
1 (D1) = z̄RT

1 (D1) + ẑRT
1 (D1)γ̃ +O(γ̃2)

The main term of (21) gives

kf (µ1 − µ2 − 2z̄DA
1 ) + (d1 − µ1)− (µ2|d1 − µ2)− 4zRT

1 (d1) = 0

or

z̄RT
1 (d1) =

1

4
(d1 − µ1)−

1

4
(µ2|d1 − µ2) +

kf
4
(µ1 − µ2 − 2z̄DA

1 )
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This gives

E[z̄RT
1 (D1)] =

kf
4
(µ1 − µ2 − 2z̄DA

1 )

The main term of (22) gives

β(µ1 − µ2 − 4z̄DA
1 ) + E

[
β(−2)z̄RT

1 (D1)
]
= 0

Using the expression of E[z̄RT
1 (D1)] gives

µ1 − µ2 − 4z̄DA
1 −

kf
2
(µ1 − µ2 − 2z̄DA

1 ) = 0

which gives

z̄DA
1 =

(2− kf )

2(4− kf )
(µ1 − µ2)

Plugging this value of z̄DA
1 into the equation for z̄RT

1 (D1) gives

z̄RT
1 (d1) =

1

4
(d1 − µ1)−

1

4
(µ2|d1 − µ2) +

kf
2(4− kf )

(µ1 − µ2)

The curvature correction term of (21) gives

− 2k2f ẑ
DA
1 − 4kf ẑ

RT
1 (d1)

+

{
− σ2

2|d1

+
(
(µ2|d1 − µ2) + (d1 − µ1) + kfµ1 + kfµ2

)
×
(
−(µ2|d1 − µ2) + (d1 − µ1)− 4z̄RT

1 (d1) + kfµ1 − kfµ2 − 2kf z̄
DA
1

)}
= 0

Using the expressions for z̄DA
1 and z̄RT

1 (d1), we calculate

(
−(µ2|d1 − µ2) + (d1 − µ1)− 4z̄RT

1 (d1) + kfµ1 − kfµ2 − 2kf z̄
DA
1

)
= 0

Therefore, the last product term is zero. We therefore have
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−2k2f ẑ
DA
1 − 4kf ẑ

RT
1 (d1)− σ2

2|d1 = 0

or

ẑRT
1 (d1) = −

kf
2
ẑDA
1 −

σ2
2|d1
4kf

This also gives

E[ẑRT
1 (D1)] = −

kf
2
ẑDA
1 − (1− ρ2s)σ

2
2

4kf

The curvature correction term of (22) gives

− 4ẑDA
1 + (µ1 + µ2)(µ1 − µ2 − 4z̄DA

1 )

+ E
[
(−2)ẑRT

1 (D1) +

(
µ1 + µ2 +

(D1 − µ1) + (D2 − µ2)

kf

)
(−2)z̄RT

1 (D1)

]
= 0

We have calculated E[ẑRT
1 (D1)] above. Using the expression for z̄RT

1 (D1) and Proposition 1, we

can also calculate

E[4((D1 − µ1) + (D2 − µ2))z̄
RT
1 (D1)]

= E
[
((D1 − µ1) + (D2 − µ2))

(
(D1 − µ1)− (µ2|D1

− µ2) +
2kf

(4− kf )
(µ1 − µ2)

)]
= E[(D1 − µ1)

2 − (D1 − µ1)(µ2|D1
− µ2) + (D2 − µ2)(D1 − µ1)− (D2 − µ2)(µ2|D1

− µ2)]

+
2kf

(4− kf )
(µ1 − µ2)E[(D1 − µ1) + (D2 − µ2)]

= σ2
1 − ρσ1σ2 + ρσ1σ2 − ρ2sσ

2
2 + 0

= σ2
1 − ρ2sσ

2
2
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Therefore,

−4ẑDA
1 + (µ1 + µ2)

(
1− 4 ·

(2− kf )

2(4− kf )

)
(µ1 − µ2)

−2

(
−
kf
2
ẑDA
1 − (1− ρ2s)σ

2
2

4kf

)
− 2(µ1 + µ2)

(
kf

2(4− kf )
(µ1 − µ2)

)
− 2

kf
· σ

2
1 − ρ2sσ

2
2

4
= 0

or

−4ẑDA
1 +

kf
4− kf

(µ2
1 − µ2

2) + kf ẑ
DA
1 +

(1− ρ2s)σ
2
2

2kf
−

kf
4− kf

(µ2
1 − µ2

2)−
σ2
1 − ρ2sσ

2
2

2kf
= 0

or

ẑDA
1 = − σ2

1 − σ2
2

2kf (4− kf )

Substituting the expression of ẑDA
1 into that of ẑRT

1 (d1) gives

ẑRT
1 (d1) =

σ2
1 − σ2

2

4(4− kf )
−

σ2
2|d1
4kf

This leads to the decentralized battery strategies as desired.
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Figure 6: Price of Anarchy with finite battery capacity.
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Figure 7: Price of Anarchy with endogenous battery capacity, considering battery investments and
operations.
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