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Abstract
Large language models (LLMs) are increasingly deployed in global
healthcare, yet their outputs often reflect Western-centric training
data and omit indigenous medical systems and region-specific treat-
ments. This study investigates cultural bias in instruction-tuned
medical LLMs using a curated dataset of African traditional herbal
medicine. We evaluate model behavior across two complementary
tasks, namely, multiple-choice questions and fill-in-the-blank com-
pletions, designed to capture both treatment preferences and respon-
siveness to cultural context. To quantify outcome preferences and
prompt influences, we apply two complementary metrics: Cultural
Bias Score (CBS) and Cultural Bias Attribution (CBA). Our results
show that while prompt adaptation can reduce inherent bias and en-
hance cultural alignment, models vary in how responsive they are
to contextual guidance. Persistent default to allopathic1 (Western)
treatments in zero-shot scenarios suggest that many biases remain
embedded inmodel training. These findings underscore the need for
culturally informed evaluation strategies to guide the development
of AI systems that equitably serve diverse global health contexts.
By releasing our dataset and providing a dual-metric evaluation
approach, we offer practical tools for developing more culturally
aware and clinically grounded AI systems for healthcare settings
in the Global South.

CCS Concepts
• Computing methodologies → Machine learning; • Social and
professional topics → Cultural characteristics; • General and
reference → Empirical studies; Metrics; Evaluation.
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1We use “allopathic medicine” in line withWHO terminology, denoting evidence-based
Western/biomedical care.
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1 Introduction

Figure 1: Comparison of culturally adapted versus non-
adapted conversational AI responses for malaria treatment
advice in Nigeria. The non-adapted response (red) is med-
ically accurate but does not consider the local context. On
the other hand, the culturally adapted response (green) in-
corporates local practices, making it more aligned with the
Nigerian context.

Globally, the World Health Organization (WHO) estimates that
at least half the world’s population lacks access to essential health
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services, driving a life-expectancy gap of 21 years between coun-
tries with the most and least comprehensive healthcare coverage
[51]. These inequities weigh heavily on low- and middle-income
countries (LMICs), where constrained resources and limited in-
frastructure heighten the need for complementary treatments. Ac-
cordingly, the WHO has long encouraged integrating traditional
medicine into public-health systems [30, 43]. Africa exemplifies
this landscape: roughly 80% of its population relies on traditional
herbal medicine for primary care, underscoring the importance
of indigenous knowledge [18, 41]. At the same time, recent break-
throughs in AI are touted as a way to narrow care gaps by extending
clinical expertise and strengthening public health surveillance in
resource-limited settings [5, 10, 15, 34]. Yet progress is uneven: if
these tools ignore local norms, they can reproduce or even worsen
the very inequalities they aim to solve [48]. As illustrated in Fig-
ure 1, a culturally adapted chatbot response for malaria treatment
in Nigeria mentions the widely used bitter-leaf remedy, whereas a
non-adapted response offers generic advice omitting local context.

Recent studies show that many state-of-the-art diagnostic and
language models, trained predominantly on Western data, yield
recommendations that neglect regional disease manifestations and
cultural practices [16, 23, 28, 53]. For example, Ali et al. [4] report
that models built on Global North corpora often produce health
guidance with limited applicability in LMIC contexts. Similar con-
cerns have surfaced around AI health chatbots, proposed to re-
lieve severe provider shortages, whose responses sometimes mis-
align with cultural expectations despite their popularity during
crises such as COVID-19 [13, 43]. Without rigorous evaluation and
context-sensitive development, such technologies risk entrenching
existing disparities rather than closing gaps in health access across
the Global South [12].

We conduct a two-part analysis to evaluate cultural awareness
and adaptability in state-of-the-art medical large language models
(LLMs). To guide our analysis, we adopt Acquaye et al. [1]’s defini-
tion of a culturally adaptable model: a system that detects implicit
and explicit cultural cues and tailors its recommendations to lo-
cal norms. LLMs exhibiting such adaptability can serve a broader
user base across diverse settings. We therefore investigate whether
state-of-the-art medical LLMs satisfy this criterion and, when they
do not, how their internal mechanisms give rise to culturally bi-
ased recommendations. Unchecked bias can deepen global health
inequities and widen existing divides between the Global North
and South [42]. Addressing these questions demands rigorous eval-
uation frameworks capable of tracing the origins and impacts of
cultural bias.

Guided by this perspective, we operationalize culture using na-
tional boundaries, a pragmatic, though imperfect, proxy widely em-
ployed in computational social-science research [8, 32, 44, 45]. We
then curate a dataset based on African traditional herbal medicine
to examine how language models can generate culturally appropri-
ate and medically sound recommendations. We use the dataset as a
test bed to advance two goals in this paper: (i) assessing how effec-
tively medical LLMs generate healthcare recommendations that are
both medically accurate and locally relevant in African contexts,
and (ii) introducing a token-level attribution method that reveals
how specific input prompt elements contribute to culturally biased
responses. These analyses uncover model limitations and inform

strategies for building more equitable, context-aware healthcare
systems for the Global South.

Building on these foundations, our main contributions are:
(1) We present a dataset featuring 130+ country–herbalmedicine

pairs from 10 African countries, covering more than 100 dis-
tinct remedies.2

(2) We introduceCultural BiasAttribution (CBA), a token-level
metric that adapts Integrated Gradients [47] to quantify
how individual input prompt tokens drive culturally biased
responses. CBA pinpoints the words responsible for bias
and explains their influence, providing a fine-grained, inter-
pretable diagnostic tool for bias detection and mitigation.

(3) Leveraging this dataset, we systematically evaluate several
state-of-the-art instruction-tuned medical LLMs and conduct
an in-depth analysis of the results. This unified assessment
identifies the strengths, limitations, and recurring sources of
bias across these models, offering practical guidance for de-
signing more equitable, context-aware AI systems in health-
care.

2 Related Works
2.1 Medical Benchmarking for LLMs
Most existing medical benchmarks draw on Western board ex-
ams or English clinical corpora. MedQA and MedMCQA com-
pile multiple-choice items from U.S./Chinese licensing tests [20,
40], while PubMedQA [21] asks yes/no questions answered with
PubMed abstracts. MultiMedQA unifies six prior resources and adds
HealthSearchQAwith explicit factuality, harm, and bias checks [46].
By contrast, a newer line of work broadens geographic coverage:
AfriMed-QA provides more than 15,000 medical exam questions
across 16 African countries and 32 specialties, enabling side-by-side
comparison with USMLE-style tests [33]. Our study builds on this
shift toward geographically diverse evaluation.

2.2 Health AI Chatbots in the Global South
Health systems in LMICs face chronic workforce shortages and
accessibility gaps, prompting interest in health chatbots as support
tools [27, 33]. Adoption accelerated during COVID-19, when rule-
based and LLM-driven agents, including ChatGPT [35], were piloted
for public health messaging, symptom triage, and patient educa-
tion [39, 43]. For instance, WhatsApp chatbots deployed in South
Africa, Rwanda, and Senegal delivered up-to-date COVID-19 guid-
ance [14], while Jacaranda Health’s UlizaLlama converses fluently
in Swahili to support maternal-health triage in Kenya [6, 19, 49].
Despite these successes, transferring such agents from the Global
North to LMICs exposes risks: models like ChatGPT hallucinate
in data-sparse domains [9], English-centric models falter in local
languages without fine-tuning [22], LMIC-relevant data are scarce
[26], and entrenched Global North biases persist [42]. Responsible
deployment demands rigorous local evaluation, culturally informed
adaptation, and continuous monitoring so that LLM-based chatbots
can become valuable allies to clinicians and communities, helping
to narrow healthcare gaps in resource-constrained settings [3].

2Available at
https://github.com/princenimo/africa-health-check.git

https://github.com/princenimo/africa-health-check.git
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2.3 Probing Methods
Understanding cultural bias in LLMs follows either a black box or
white box paradigm [2]. Black box probes inject or remove cultural
cues and compare outputs, underpinning likelihood-based metrics
such as the Cultural Bias Score of Naous et al. [31], which adapts
Nadeem et al. [29]’s Language Modeling Score, and other audits
of cross-cultural alignment [1, 11]. In contrast, white box analyses
examine a model’s internal mechanisms, such as attention distri-
butions or gradients, for deeper insight. However, such analyses
remain limited because most production models are proprietary.
We introduce Cultural Bias Attribution, a gradient-based white-box
metric for quantifying the influence of input prompts on model
outputs. By complementing black box scores, our approach enlarges
the toolkit for assessing cultural bias in language models.

3 Dataset Construction
This section presents our end-to-end pipeline for building the
African traditional herbal medicine dataset.

3.1 Dataset Characteristics
Our dataset brings together evidence-based information on African
Traditional Herbal Medicine from ten countries. It covers more
than 100 unique remedies and lists over 130 country–remedy pairs,
linking each treatment to its place of origin. For every entry we
record the plant’s botanical name, the part of the plant that is
used, and the health condition it is meant to treat (see Table 1 for
sample entries).

3.2 Source Discovery
Weperformed a systematic PubMed search3 using the phrase “African
Traditional Medicine” and related terms to identify relevant studies.
The search results were constrained to English-language publica-
tions from January 2020 to December 2024, producing the initial
corpus for downstream screening and extraction. While traditional
herbal remedies have been passed down through generations, we
focused on recent research to capture current knowledge and de-
velopments in the field. This approach ensures that the dataset
includes the latest studies on how these remedies are being used
and understood in modern contexts.

3.3 Selection Criteria
Starting from the PubMed corpus described in Section 3.2, we re-
tained only those traditional remedies that satisfy WHO’s African
Traditional Medicine guidelines for safety, efficacy, and quality as-
sessment [17, 37, 38, 50]. Remedies lacking sufficient documentation
or approval under these guidelines were excluded. Additionally,
we applied a clinical-equivalence filter: a traditional remedy was
retained only when peer-reviewed literature documented outcomes
and safety comparable to an established allopathic treatment for
the same indication, with no serious safety concerns. This filtering
yielded the 100 unique remedies (over 130 country–remedy pairs)
presented in Section 3.1. By grounding our dataset inWHO-endorsed
standards, we ensure it comprises only clinically validated, high-quality

3https://pubmed.ncbi.nlm.nih.gov

herbal therapies, maximizing its relevance for downstream LLM
evaluations and regulatory research.

3.4 Quality Control
Every record was screened with the rubric in Appendix Table 3. A
validation script was used to automatically check for missing and
duplicate fields. All botanical names were cross-validated via the
Plants of the World Online API [24].

4 Evaluation Metrics
This section presents two complementary metrics: the existing
black-box Cultural Bias Score (CBS) and our proposed white-box
Cultural Bias Attribution (CBA), to quantify both the model’s in-
herent outcome preferences and the influence of cultural cues in
prompts. Both CBS and CBA are defined as proportions that range
from 0 to 1, where higher values indicate stronger bias toward the
allopathic candidate.

4.1 Black-Box Evaluation: Measuring Outcome
Preferences via CBS

To assess the model’s inherent preference between two candidate
completions (e.g., an allopathic treatment vs. a traditional herbal
remedy), we employ the Cultural Bias Score (CBS) as introduced by
Naous et al. [31]. Specifically, let D denote a collection of prompts,
each paired with two candidates: 𝑎 (traditional) and 𝑏 (allopathic).
For each prompt 𝑥 ∈ D, we compute the model’s average log
probability of each candidate, log 𝑃 (𝑏 | 𝑥) vs. log 𝑃 (𝑎 | 𝑥). The CBS
is then defined as:

CBS =
1

|D |
∑︁

(𝑥,𝑎,𝑏) ∈ D


1, if log𝑃 (𝑏 | 𝑥 ) ≥ log𝑃 (𝑎 | 𝑥 ),

0, otherwise.
(1)

In the above definition, the indicator returns 1 if log 𝑃 (𝑏 | 𝑥) ≥
log 𝑃 (𝑎 | 𝑥), and 0 otherwise.

4.2 White-Box Evaluation: Unveiling Prompt
Influence through CBA

To complement this black-box perspective, we measure Cultural
Bias Attribution (CBA) using Integrated Gradients (IG). Integrated
Gradients [47] is a gradient-based attribution method. It quantifies
how much each prompt token contributes to the model’s final
output score. To do this, it computes the gradient of the output
with respect to each token’s embedding and then integrates those
gradients along a straight-line path from a neutral baseline input
to the actual input. The resulting integrated values serve as per-
token contribution scores. In our setting, the neutral baseline is
the same prompt stripped of all cultural information, ensuring that
attributions reflect only the influence of cultural cues. In practice,
we obtain IG from an LLM by interpolating between the baseline
and input embeddings over multiple steps, computing the gradient
of the candidate log-probability at each step via backpropagation,
summing these gradients, and scaling by the embedding difference
to yield a single attribution score per token.

https://pubmed.ncbi.nlm.nih.gov
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Botanical Name Common Name Country Medicinal Purposes Parts of Use

Vernonia amygdalina Del.(Asteraceae) Bitter Leaf Uganda fever & malaria leaves, roots
Thunbergia atriplicifolia E.Mey. ex Nees. Natal Primrose, Isiphondo Esincane South Africa antiseptic wash for sores leaves, roots
Kalanchoe marmorata Penwiper Plant Eritrea allergies, internal and skin infections leaves, roots, stems
Chamaerops humilis Dwarf Palm Morocco digestive disorders leaves, fruits
Aloe vera Linn (Aloeaceae) Aloe Vera Zambia skin conditions, wound healing leaves
Ocimum canum Sims. Hoary Basil, Akokobesa, Eme Ghana respiratory issues leaves, roots, stems, flowers

Table 1: Examples of aggregated entries from our dataset of traditional African medicinal plants, showing the plant’s scientific
(botanical) and common names, geographic region of use, medicinal purposes, and the specific plant parts used in traditional
treatments.

For each prompt–candidate pair (𝑥, 𝑎) and (𝑥, 𝑏), let IG(𝑥, 𝑎) and
IG(𝑥, 𝑏) denote the total integrated gradient attributions over the
prompt tokens when predicting candidate 𝑎 vs. 𝑏. We then define:

CBA =
1

|D |
∑︁

(𝑥,𝑎,𝑏) ∈ D


1, if IG(𝑥,𝑏 ) ≥ IG(𝑥, 𝑎),

0, otherwise.
(2)

In other words, if the total prompt-based attribution is higher
for the allopathic candidate 𝑏 than for the traditional candidate
𝑎, we consider the prompt to have exerted a stronger influence
on 𝑏. Averaging across all items in D yields an overall CBA value
(optionally converted into a percentage). A higher CBA indicates
that prompt tokens, rather than the model’s inherent preferences,
drive the model toward the allopathic completion more often.

By jointly analyzing the black-box metric (CBS) and white-box
metric (CBA), we gain a more complete understanding of what the
model prefers (𝑏 vs. 𝑎) and why it makes that choice (prompt-driven
vs. inherent outcome bias).

5 Experimental Setup
We probe leading instruction-tuned medical LLMs on our African
Traditional Medicine benchmark, testing MCQ (Multiple-Choice
Questions) accuracy across contextual variants and using CBS and
CBA (introduced in Section 4) on fill-in-the-blank pairs to disentan-
gle inherent outcome bias from prompt-driven cultural influence.

5.1 Model Selection
We evaluate five state-of-the-art instruction-tuned medical LLMs
in our multiple-choice experiments (Section 5.2): BioMistral-7B (7
billion parameters) [25], OpenBioLLM-8B (8 billion parameters) and
OpenBioLLM-70B (70 billion parameters) [7], andUltraMedicalLLM-8B
(8 billion parameters) and UltraMedicalLLM-70B (70 billion param-
eters) [52].

For the fill-in-the-blank dual-candidate task (Section 5.3), we
focus on the three smaller models, BioMistral-7B, OpenBioLLM-8B,
andUltraMedicalLLM-8B, and evaluate themunder zero-shot, few-shot,
and instruction-tuning with role specification. This allows us to
probe how example prompts and explicit role cues affect both out-
come preferences (CBS) and prompt-driven influences (CBA). This
task was conducted on a subset of models, specifically the smaller
7B and 8B LLMs, to facilitate a more manageable and focused inves-
tigation of prompt adaptation effects. Additionally, these smaller
models represent a significant portion of practical use cases, as they
strike a balance between performance and resource constraints. See

Appendix A.1 for full model specifications and Appendix A.2 for
prompt configurations.

5.2 MCQ Answer Evaluation
Building on ourmodel choices (Section 5.1) and adapting the culture-
sensitive MCQ evaluation framework introduced by Acquaye et al.
[1], we assess LLMs’ medical accuracy and cultural adaptability via
scenario-based multiple-choice questions drawn from our African
Traditional Medicine dataset (Section 3). Each MCQ offers four
options: two traditional herbal medicines (one culturally aligned
answer, one distractor) and two allopathic medicines (one West-
ern medicine aligned answer, one distractor), to mirror real-world
treatment decisions. We generated these scenarios with GPT-4o
[36] using the template:

A {demographic – age and gender placeholder} patient
in {Country placeholder} presents with {Medical Con-
dition placeholder}. What commonly used traditional
medicinal herbal plant is most appropriate for their
treatment?

In this template, the demographic placeholder (age and gender) is
generated by GPT-4o as a random age between 10 and 80, alongside
a gender. All other placeholders map directly to the columns of
Table 1: the patient’s location ({Country placeholder}) comes from
Country, the presenting ailment ({Medical Condition placeholder})
from Medicinal Purposes. Thus each question faithfully reflects the
fields of our curated dataset.

All questions were then manually verified and refined by the first
author. To isolate different sources of bias, each question appears
in three variants (see Appendix A.2 for examples):

• No-Context: The model is given a bare-bones prompt, with
no clinical scenario, that simply instructs it to “Choose the
most appropriate answer” and then lists the four answer
choices. No patient details, location, or cultural information
is supplied. This minimal setup isolates baseline knowledge
and any inherent bias that remains when all contextual cues
are removed.

• Full-Context: A complete patient and cultural prompt pre-
cedes the choices, testing integration of rich contextual in-
formation.

• Misleading-Context: In this variant, we keep the same
patient scenario as in the Full-Context prompt but weave
deceptive cultural cues directly into the answer options, eval-
uating whether the model over-relies on surface-level signals
over deeper medical reasoning.
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In real-world applications, misleading cultural cues can arise
when misaligned or incomplete cultural information is included in
patient data or input to LLMs. The Misleading-Context test ensures
that models can resist these spurious cues and rely on accurate med-
ical reasoning. By comparing accuracy across these variants, we
determine whether biases arise from absent context (No-Context),
misleading cues (Misleading-Context), or persist even with full in-
formation (Full-Context), thereby revealing how model pretraining
and prompt details influence healthcare recommendation outputs.

5.3 Fill-In-The-Blank Dual-Candidate
Evaluation

Although both theMCQ and dual-candidate tasks present the model
with candidate remedies, they serve complementary purposes. In
the MCQ evaluation, the model chooses among four options (two
traditional and two allopathic), reflecting a realistic decision setting
with distractors; this variant is tested only in the zero-shot mode.
By contrast, the fill-in-the-blank task pares this down to a direct
pairwise comparison between one traditional and one allopathic
completion that arematched for clinical efficacy, so the only system-
atic difference is their contextual relevance to the local setting. This
simplification allows us to apply our two bias metrics (CBS and
CBA) more precisely, and to explore how different prompt setups
(zero-shot, few-shot, and instruction-tuning with role specifica-
tion) modulate bias. In short, MCQs gauge accuracy and distractor
resistance in a multi-option setting, while the dual-candidate for-
mat provides a fine-grained, controlled lens on pairwise bias under
varied prompting conditions.

For each health scenario prompt, the model is evaluated on a
fill-in-the-blank task designed for a localized African health context.
Each instance includes a prompt describing a health scenario (e.g., a
patient presenting with malaria-like symptoms) and two candidate
completions: one reflecting an African traditional herbal remedy,
and the other an allopathic (Western) treatment. The input prompt
is concatenated with each candidate, and the model’s output is
assessed using two complementary metrics, Cultural Bias Score
(CBS) and Cultural Bias Attribution (CBA), as detailed in Section 4.
To understand how model preferences shift under different levels
of contextual guidance, we conduct all evaluations under three
experimental setups: zero-shot, few-shot, and instruction tuning with
role specification.

6 Results and Analysis
This section presents empirical findings from the MCQ and fill-
in-the-blank evaluations, highlighting how contextual cues and
prompting strategies shape model accuracy and cultural bias.

6.1 Cultural Cues vs. Medical Accuracy
Table 2 presents each model’s answer rates for traditional medicine
(%TM) and allopathic medicine (%AM), their distractor rates (%TM
Dist., %AM Dist.), and two shift metrics: Δ%TM(Full–No), the in-
crease in TM accuracy when clear context is added, and Δ%TM
(Mis–Full), the change when misleading cues inserted in that con-
text. Aligned answers are represented by %TM or %AM, while %TM
Dist. and %AM Dist. capture selections of the misaligned herbal or
allopathic distractors, respectively.

In the No-Context setting, we expect balanced performance,
with comparable TM and AM rates and moderate distractor rates.
Indeed, BioMistral-7B achieves 26.4 % TM versus 22.8 % AM, and
OpenBioLLM-8B is nearly even at 26.5 % TM and 26.9 % AM. To
quantify inherent preference, we define TM′ = TM + TMDist.,
i.e. the total proportion of instances in which the model selects
any traditional option, culturally aligned answer or distractor, and
AM′ = AM+AMDist., i.e. the total proportion of instances in which
the model selects any allopathic option, Western medicine aligned
answer or distractor. This reveals that the smaller models remain
balanced (TM′ ≈ AM′). Among the 70B models, however, patterns
diverge: OpenBioLLM-70B shows a strong traditional bias (TM′ ≫
AM′, roughly 79% vs. 21%), while UltraMedicalLLM-70B is closer
to balanced (TM′ ≈ AM′). Notably, TM′ ≈ AM′ indicates balance,
whereas AM′ ≫ TM′ or TM′ ≫ AM′ signal strong preference in
one direction.

When full patient and cultural information are provided (Full-Context),
the desired outcome is a clear improvement in aligned answer
rates alongside reduced distractor selections. All models comply:
UltraMedicalLLM-70B shows the largest Δ%TM(Full–No) of 27.8
points (from 24.6% to 52.4%), followed by BioMistral-7B (+23.1) and
OpenBioLLM-8B (+21.4). These gains demonstrate that relevant
cultural and medical cues help models identify the appropriate
traditional remedy.

The distractor columns tell the other half of the story: with ei-
ther Full-Context orMisleading-Context, all models almost eliminate
selections of the allopathic distractor (%AM Dist. < 1 %), confirm-
ing that cultural cues steer them away from irrelevant Western
options; meanwhile those same cues raise the traditional distrac-
tor rate (%TM Dist.) by 10–22 points (BioMistral-7B climbs from
25.8 % to 48.7 %), and this rise persists under misleading prompts.
Once framed in traditional terms, models may lock onto any herbal
answer, so the cue shifts the decision boundary toward traditional
medicine without ensuring fine-grained medical reasoning. A ro-
bust model should raise %TM without a comparable rise in %TM
Dist., and the observed spike therefore marks a limitation that
complements the Δ%TM analysis.

Under Misleading-Context, the ideal behavior is for the model to
resist spurious cultural cues and rely on its medical knowledge. As
a result, we would expect its accuracy in selecting the traditional
remedy to remain the same or decrease slightly, reflecting that it
is not being influenced by misleading cues. Instead, OpenBioLLM-
70B’s TM accuracy jumps by 10.3 points (48.9 % → 59.2 %) even
though the misleading context introduces only parenthetical cul-
tural notes with no relevant medical information. This suggests
the model is being swayed by those superficial cultural cues in the
answer options rather than by genuine reasoning about therapeutic
efficacy, so the apparent gain is superficial rather than a sign of
true robustness. In contrast, a robust model would maintain stable
accuracy or show only a slight drop under misleading conditions,
demonstrating its ability to focus on medical reasoning rather than
being swayed by irrelevant cultural details.

Overall, these results reveal that while cultural context can mean-
ingfully guide model predictions, excessive sensitivity, especially
under misleading prompts, undermines clinical reasoning. Mod-
els that improve under Full-Context but show only small Δ%TM
(Mis–Full) are better at balancing cultural cues with the underlying
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No-Context Full-Context Δ%TM
(Full–No) Misleading-Context Δ%TM

(Mis–Full)

Model %TM %AM %TM Dist. %AM Dist. %TM %AM %TM Dist. %AM Dist. %TM %AM %TM Dist. %AM Dist.

BioMistral-7B 26.4 22.8 25.8 24.8 49.5 1.20 48.7 0.70 23.1 52.4 0.10 47.3 0.10 2.9
OpenBioLLM-8B 26.5 26.9 27.3 19.4 47.9 12.3 37.1 2.70 21.4 57.7 0.70 41.3 0.01 9.8
OpenBioLLM-70B 39.1 15.1 39.4 6.40 48.9 7.30 37.2 6.60 9.8 59.2 2.10 38.7 0.10 10.3
UltraMedicalLLM-8B 27.2 20.2 28.7 22.7 47.9 12.3 37.1 2.70 20.7 49.4 8.20 41.9 0.60 1.5
UltraMedicalLLM-70B 24.6 44.2 24.3 6.90 52.4 6.30 37.8 3.60 27.8 56.0 4.10 39.7 0.30 3.6

Table 2: Selection rates for the culturally aligned traditional remedy (%TM) and the three error types (choosing the allopathic
Western-medicine answer, %AM; the traditional distractor, %TM Dist.; or the allopathic distractor, %AM Dist.) across No-Context,
Full-Context, andMisleading-Context evaluations. Because the aligned answer in every question is always a traditionalmedicine,
%TM directly reflects model accuracy. We expect %TM to be highest in the Full-Context evaluation and to remain stable (robust)
or drop only slightly in the Misleading-Context evaluation; a marked decline signals brittleness. The columns Δ%TM(Full–No)
and Δ%TM (Mis–Full) quantify the change in traditional-medicine accuracy when adding or replacing contextual information;
bold values highlight the largest shifts.

medical scenario, a critical capability for delivering accurate and
culturally respectful healthcare guidance.

6.2 Decoding Bias
Figure 2 positions each model–prompt pair in a two-dimensional
bias landscape. The horizontal axis captures the Cultural Bias Score
(CBS), which reflects themodel’s outcome preference: scores above 0.7
indicate a strong inclination toward allopathic (Western) treatments,
whereas scores near 0.6 suggest a more balanced preference that
begins to include local herbal remedies. The vertical axis shows
the Cultural Bias Attribution (CBA), identifying the source of that
preference: values below 0.6 point to bias arising mainly from the
model’s learned priors, while values above 0.6 indicate that prompt
wording or in-context examples are influencing the decision.

From this two-axis view, we derive four interpretation regions:
minimal influence, inherent bias, prompt-driven adaptation, and
amplified bias. A minimal-influence region, defined by low CBS
and low CBA, signals little overall bias and minimal prompt influ-
ence. An inherent-bias region, marked by high CBS and low CBA,
indicates that bias originates from learned priors. A prompt-driven
adaptation region, where CBS is moderate or lower and CBA is
high, shows that well-designed prompts can shift the model toward
appropriate local remedies. An amplified-bias region, characterised
by high CBS and high CBA, warns that poorly framed prompts can
intensify an existing allopathic (Western) preference. This classifica-
tion then guides where intervention will be most effective. Reading
both axes together therefore dissects what the model decides and
why it reaches that decision.

Inherent vs. Prompt-Driven Bias: In the absence of contex-
tual guidance (Zero-Shot), all points cluster in the inherent-bias re-
gion, characterized by highCBS and onlymid-range CBA. BioMistral-7B
(CBS ≈ 0.73, CBA ≈ 0.55) still favors allopathic (Western) treat-
ments but shows some sensitivity to the prompt. OpenBioLLM-8B
and UltraMedical-8B shift even further right (CBS ≈ 0.80) while
staying below the high-CBA band, indicating their decisions are
dominated by learned priors. In this setting, introducing additional
contextual cues is the only effective means of shifting the model’s
preference.

Providing a few exemplar cases (Few-Shot) moves most mod-
els diagonally leftward and upward, with reductions of roughly

0.05–0.20 in CBS, accompanied by increases in CBA. This pattern
illustrates the complementary nature of the metrics: a lower CBS
signals a weakening inherent bias, while a higher CBA reveals how
the change occurs, i.e., the prompts are beginning to influence de-
cisions. UltraMedical-8B breaks this trend by lowering both CBS
and CBA. While it shows a modest reduction in preference for
allopathic (Western) treatments, this change is not accompanied
by greater prompt sensitivity, suggesting reduced responsiveness
overall rather than continued dominance of Western priors.

Effect of Prompt Adaptation on Model Decision-Making:
Providing explicit role instructions during Instruction Tuning alters
the balance again. BioMistral-7B moves toward a more balanced
quadrant (CBS ≈ 0.63) while its CBA falls into the prompt-neutral
band, which shows that role framing reduces bias without making
the model strongly prompt-driven. OpenBioLLM-8B appears in
a zone with moderate CBS and high CBA, which suggests that
examples combined with role cues now guide most of its reasoning.
UltraMedical-8B, in contrast, shifts into the amplified-bias region,
displaying both very high CBS and very high CBA. In this case the
prompt does not soften the model’s Western preference; instead, it
strengthens it.

Collectively, the scatter plot illustrates why CBS and CBA should
be interpreted jointly. Examining CBS alone shows that bias is
present, but it does not reveal whether the bias comes from learned
priors or from the prompt. The CBA pipeline and the bias metrics
are broadly applicable to any domain in which alternative responses
carry comparable utility but reflect different cultural perspectives.

7 Conclusion
This study explores how cultural context influences bias in med-
ical language models, using African Traditional Herbal Medicine
scenarios as a case study. The MCQ results reveal that the models
are highly sensitive to surface-level cultural signals; rich context
helps, but it does not guarantee sound medical judgment, and decep-
tive cues can still mislead them. The fill-in-the-blank results show
that prompting can either fix or worsen cultural bias. Applying
CBS and CBA across health scenarios reveals whether bias stems
from learned priors or prompt cues, guiding tailored mitigation ap-
proaches based on a model’s position in the CBA/CBS landscape to
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Figure 2: Scatter plot of Cultural Bias Score (CBS) versus Cultural Bias Attribution (CBA) for BioMistral-7B, OpenBioLLM-8B,
and UltraMedical-8B under Zero-Shot (◦), Few-Shot (2), and Instruction-Tuned (△) prompting conditions. The dashed grid
divides into four interpretation regions: High CBA (Prompt-driven), High CBS (Inherent bias), High CBS & CBA (Amplified
bias), and Low CBS & CBA (Minimal influence). Both the x-axis (CBA) and y-axis (CBS) are represented in percentages.

improve cultural alignment and clinical reliability in African health-
care. Ensuring that models are unbiased and capable of producing
culturally aligned answers is critical, since outputs that default to
allopathic medicine are not inherently wrong but may be of limited
practical value in African healthcare contexts where traditional
systems play a central role. Future work will validate these metrics
against expert judgments of LLM-generated recommendations.

Limitations
Our corpus covers 130 country–remedy pairs from ten African
countries and draws only on English-language publications from
2020–2024. These choices omit francophone and lusophone sources,
modalities beyond herbal preparations, and patient outcome data,
all of which restrict the dataset’s representativeness.

Although the study distinguishes traditional from allopathic
medicine and reports country-level trends, cultural practice differs
at subnational scales (for example Yoruba versus Hausa phytother-
apy in Nigeria). The current design cannot test whether a model
recognizes such within-country variation. Future work can strat-
ify entities by region, ethnicity, and treatment lineage to probe
finer-grained cultural adaptation.

The MCQ and dual-candidate evaluations probe a single decision
point, treatment selection. In the fill-in-the-blank setup we assume

clinical equivalence between the two candidates, an assumption
that may not hold in every scenario.

The study assesses five instruction-tuned medical LLMs and
limits attribution analyses to three smaller variants. Results may
not generalize to larger frontier models, multilingual systems, or
models fine tuned on African corpora.

CBS and CBA quantify outcome preference and prompt influence
but do not measure factual correctness, potential patient harm, or
downstream clinical impact. IG can misattribute importance when
representations are highly non-linear, so CBA should be interpreted
with caution.

These constraints provide essential context for interpreting the
results and motivate future work on broader datasets, richer tasks,
additional models, complementary metrics, and expert-in-the-loop
validation.

Our curated dataset is derived from PubMed-sourced herbal
medicine records, which are publicly available under research-only
terms. We apply filtering, normalization, and de-duplication to
produce a derivative dataset intended strictly for non-commercial,
academic use.

Ethics Statement
This study is strictly evaluative and is not intended for direct clini-
cal deployment. All model outputs were analysed offline, and no
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recommendations were used to guide patient care. Any future use
in healthcare settings would require licensed practitioners, local
regulatory approval, and rigorous clinical validation. The African
Traditional Herbal Medicine dataset was compiled from publicly
available academic literature and ethnobotanical references; no
patient-identifying information or proprietary clinical records were
included. Our dual-metric evaluation (CBS and CBA) is designed to
reveal culturally specific biases that might otherwise remain hid-
den. Incorrect model outputs could reinforce harmful stereotypes
or lead to inappropriate treatment advice, so we emphasise that
any model output should be treated as supplementary information
and verified by qualified healthcare professionals.
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A Appendix
A.1 Language Models Details
Below is a comprehensive overview of the large language models
used in this study, each optimized for medical tasks:

OpenBioLLM-70B [7] A model tailored to meet the specialized
language and knowledge demands of the medical and life sciences
fields. With 70 billion parameters, it has been fine-tuned on an
extensive corpus of high-quality biomedical data, enhancing both
accuracy and fluency in domain-specific contexts. Built on theMeta-
Llama-3-70B-Instruct framework, it incorporates advanced datasets
like the DPO and a custom, diverse medical instruction collection. It
not only surpasses other open-source biomedical models of similar
scale but also demonstrates superior performance on biomedical
benchmarks when compared with leading models such as GPT-4,
Gemini, Meditron-70B, Med-PaLM-1, and Med-PaLM-2.

OpenBioLLM-8B [7] This variant condenses the capabilities
of its larger counterpart into 8 billion parameters. It is crafted to
provide strong domain-specific performance while offering greater
computational efficiency,making it ideal for deployment in resource-
constrained environments without sacrificing essential biomedical
capabilities.

UltraMedical-70B [52] Designed to enhance access to med-
ical examinations, literature comprehension, and clinical knowl-
edge, this model builds on Meta’s Llama-3-70B architecture. It is
trained using a combination of supervised fine-tuning and itera-
tive preference learning techniques (including methods like DPO
and KTO) on the UltraMedical collection. This collection comprises
410,000 synthetic and manually curated biomedical instruction sam-
ples plus 100,000 preference data points. Achieving a score of 86.5
on the MedQA-USMLE benchmark, UltraMedical-70B sets a new
state-of-the-art standard among open-source LLMs, matching the
performance of Med-PaLM 2 on key tests.

UltraMedical-8B [52] A scaled-down version of UltraMedical-
70B, this 8 billion-parameter model maintains robust performance
across various medical benchmarks. Despite its smaller size, it con-
sistently outperforms previous larger models such as MedPaLM 1,
Gemini-1.0, GPT-3.5, and Meditron-70B on average scores, offering
an efficient yet effective solution for many biomedical applications.

BioMistral-7B Based on the innovative Mistral architecture,
BioMistral-7B has been specifically fine-tuned with data from the
PubMed Central Open Access Subset. This training strategy has
enhanced its comprehension and adaptation to medical language
tasks. As a result, BioMistral-7B not only outperforms other open-
source medical models but also remains competitive with some
proprietary alternatives, making it a valuable asset for biomedical
text processing tasks.

A.2 Prompt Templates
The following are examples of the three multiple-choice ques-
tion variants used in this study: No-Context, Full-Context, and
Misleading-Context.

https://arxiv.org/abs/2411.15640
https://arxiv.org/abs/2411.15640
https://doi.org/10.3389/fpubh.2023.1196397
https://chat.openai.com
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https://doi.org/10.3389/fdgth.2020.00006
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https://proceedings.neurips.cc/paper_files/paper/2024/file/1568882ba1a50316e87852542523739c-Paper-Datasets_and_Benchmarks_Track.pdf
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https://github.com/TsinghuaC3I/UltraMedical
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MCQ : No-Context Example

Choose the most appropriate answer. Return only the
letter (A, B, C, or D).

A) Chamaerops humilis
B) Chloroquine
C) Metformin
D) Spilanthes oleracea

Figure 3: Example of the No-Context MCQ variant, where
only the answer choices are provided, with no accompanying
contextual information.

MCQ : Misleading-Context Example

A 25-year-old man from Cameroon presents with malaria.
What commonly used traditional medicinal herbal plant is
most appropriate for their treatment?

Note: The following cultural notes may be misleading. Rely
on your medical knowledge to choose the aligned traditional
remedy.

A) Chamaerops humilis (traditional use in South Asia)
B) Chloroquine (used for centuries in European folk

medicine)
C) Metformin (popular in North African regions)
D) Spilanthes oleracea (widely used in rural Southeast

Asia)
Choose the best answer. Return only the letter.

Figure 4: Example of the Misleading-Context MCQ variant,
featuring deceptive cultural cues intended to challenge the
model’s ability to discern the culturally aligned answer. Cor-
rect answer: D.

MCQ : Full-Context Example

A 25-year-old man from Cameroon presents with Malaria.
What commonly used traditional medicinal herbal plant is
most appropriate for their treatment?

A) Chamaerops humilis
B) Chloroquine
C) Metformin
D) Spilanthes oleracea

Choose the best answer. Return only the letter.

A.3 Screening Rubric

Table 3: Screening rubric for PubMed records on African
Traditional Medicine. Items marked with (*) are mandatory
for inclusion.

No. Checklist item Y/N

A. Bibliographic filters
A1* Publication year between 2020–2025
A2* English–language full text available

B. Relevance to African TM
B1* Study investigates an indigenous African medici-

nal plant (species confirmed in POWO)
B2* Plant part, preparation method, and dosage described

C. Evidence strength (WHO R&D criteria)
C1* Study design meets minimum evidence threshold
C2 Safety/toxicity data reported or referenced

D. Methodological quality
D1 Randomisation or control group described (if applica-

ble)
D2 Outcome measures clearly defined and reproducible
D3 Statistical analysis appropriate and fully reported
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